Article Review
Mekhilef, S., Saidur, R. and Safari, A., 2012 : Comparative study of different fuel cell technologies, Renew. Sust. Energ. Rev., 16(1), pp.981-989.
10.1016/j.rser.2011.09.020Sharaf, O. Z. and Orhan, M. F., 2014 : An overview of fuel cell technology: Fundamentals and applications, Renew. Sust. Energ. Rev., 32, pp.810-853.
10.1016/j.rser.2014.01.012Appleby, A. J., 1990 : From Sir William Grove to today: fuel cells and the future, J. Power Sources, 29(1-2), pp.3-11.
10.1016/0378-7753(90)80002-UWarshay, M. and Prokopius, P. R., 1989 : The fuel cell in space: yesterday, today and tomorrow, Proc. of Grove Anniversary (1839-1989) Fuel Cell Symp., NASA Tech. Memo. 102366, pp.1-20, Royal Institution, London, UK, 18-21 September 1989, NASA Lewis Research Center, Cleveland, OH.
Larminie, J., Dicks, A. and McDonald, M. S., 2003 : Fuel Cell Systems Explained, 2nd edition, Wiley, Chichester, UK.
10.1002/9781118878330Edwards, P. P., Kuznetsov, V. L., David, W. I., et al., 2008 : Hydrogen and fuel cells: towards a sustainable energy future, Energy Policy, 36(12), pp.4356-4362.
10.1016/j.enpol.2008.09.036International Energy Agency (IEA), Fuel cell electric vehicle stock by region and by mode. https://www.iea.org/data-and-statistics/charts/fuel-cell-electric-vehicle-stock-by-region-and-by-mode-2021, March 30, 2025.
2050 Carbon Neutrality and Green Growth Commission, Overview of the 2050 Carbon Neutrality and Green Growth Commission. https://www.2050cnc.go.kr/base/contents/view?contentsNo=58&menuLevel=2&menuNo=110, March 30, 2025.
Government of the Republic of Korea, Korea achieves world-leading deployment of hydrogen vehicles, charging stations, and fuel cells as of 2025, Gov.kr. https://www.gov.kr/portal/gvrnPolicy/view/H2210000000937825, March 30, 2025.
Yakoumis, I., Panou, M., Moschovi, A. M., et al., 2021 : Recovery of platinum group metals from spent automotive catalysts: A review, Clean. Eng. Technol., 3, 100112.
10.1016/j.clet.2021.100112Park, E. M., Han, C. W., Son, S. H., et al., 2022 : Research trends in recycling of lithium-ion batteries through pyrometallurgical processes, Resour. Recycl., 31(3), pp.27-39.
10.7844/kirr.2022.31.3.27Zhang, Y., Wang, J., and Yao, Z., 2023 : Recent Development of Fuel Cell Core Components and Key Materials: A Review, Energies, 16(5), pp.2099.
10.3390/en16052099Peng, Z., Li, Z., Lin, X., et al., 2017 : Pyrometallurgical recovery of platinum group metals from spent catalysts, JOM, 69, pp.1553-1562.
10.1007/s11837-017-2450-3Islam, A., Ahmed, T., Awual, M. R., et al., 2020 : Advances in sustainable approaches to recover metals from e-waste - A review, J. Clean. Prod., 244, 118815.
10.1016/j.jclepro.2019.118815Ye, D.-h. and Zhan, Z.-g., 2013 : A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells, J. Power Sources, 231, pp.285-292.
10.1016/j.jpowsour.2013.01.009Ulleberg, Ø., Moen, A. and Møller‑Holst, S., 2010 : End of life of fuel cells and hydrogen products: A critical review, Int. J. Hydrogen Energy, 35(6), pp.2383-2390.
Park, J., Lee, J., Kim, J., et al., 2022 : Membrane electrode assembly degradation modeling of proton exchange membrane fuel cells, Energies, 15(21), 7942.
10.3390/en15239247Jawad, N. H., Yahya, A. A., Al‑Shathr, A. R., et al., 2022 : Fuel cell types, properties of membrane, and operating conditions - A review, Sustainability, 14, 14653.
10.3390/su142114653Che Ramli, Z. A., Pasupuleti, J., Tengku Saharuddin, T. S., et al., 2023 : Electrocatalytic activities of platinum and palladium catalysts for enhancement of direct formic acid fuel cells: An updated progress, Alex. Eng. J., 76, pp.701–733.
10.1016/j.aej.2023.06.069Parveen, S., Monga, D., Shetti, N. P., et al., 2023: Recent advances in various processes for clean and sustainable production of formic acid: A review, Clean. Chem. Eng., 4, 100101.
Nasef, M. M., Casimiro, M. H., Ferreira, L. M., et al., 2019 : Ionizing radiation for preparation and functionalization of membranes and their biomedical and environmental applications, Membranes, 9(12), 161.
10.3390/membranes912016331816943PMC6950004Min, T., Zhang, R., Chen, L., et al., 2023 : Reactive transport processes in proton exchange membrane fuel cells, Encyclopedia, 3, pp.746–758.
10.3390/encyclopedia3020054Pan, M., Pan, C., Li, C., et al., 2021 : A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability, J. Ind. Eng. Chem., 125, pp.528–567.
10.1016/j.rser.2021.110771Ozigi, B. O., Adgidzi, D., and Nnamdi, E., 2023 : Efficiency analysis of hydrogen fuel cell power systems for off‑grid applications, Int. J. Eng. Adv. Technol. Stud., 11(1), pp. 37-54.
10.37745/ijeats.13/vol11n13755Wang, H., Wu, Z., Lin, L., et al., 2021: Recent advances in designing and tailoring nanofiber composite electrolyte membranes for high‑performance proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 46(36), pp. 25225-25251.
10.1016/j.ijhydene.2021.05.048Sinniah, J. D., Wong, W. Y., Lim, K. L., et al., 2022 : Perspectives on carbon‑alternative materials as Pt catalyst supports for a durable oxygen reduction reaction in proton exchange membrane fuel cells, J. Power Sources, 534, 231422.
10.1016/j.jpowsour.2022.231422Xie, M., Wang, Y., Wu, H., et al., 2021 : Preparation, performance and challenges of catalyst layer for proton exchange membrane fuel cells: A review, Membranes, 11, 879.
10.3390/membranes1111087934832108PMC8617821Ren, H., Zhang, H., Lin, R., et al., 2022 : Microstructure formation mechanism of catalyst layer and its effect on fuel cell performance: Effect of dispersion medium composition, J. Energy Chem., 73, pp.588-598.
10.1016/j.jechem.2022.06.034Komini Babu, S., Mukundan, R., Wang, C., et al., 2021 : Effect of catalyst and catalyst layer composition on catalyst support durability, J. Electrochem. Soc., 168, 044502.
10.1149/1945-7111/abf21fAhn, S. H., Jeon, S., Park, H., et al., 2013 : Effects of platinum loading on the performance of proton exchange membrane fuel cells with high ionomer content in catalyst layers, Int. J. Hydrogen Energy, 38, pp.9826-9834.
10.1016/j.ijhydene.2013.05.123Watanabe, K., Sugawara, Y., Yamaguchi, K., et al., 2009 : Effects of platinum loading on PEFC power generation performance deterioration due to carbon corrosion, Electrochemistry, 77(5), pp.366-369.
Strong, A., Thornberry, C., Beattie, S., et al., 2015 : Depositing catalyst layers in polymer electrolyte membrane fuel cells: A review, J. Fuel Cell Sci. Technol., 12(6), 064001.
10.1115/1.4031961Liu, Q., Lan, F., Chen, J., et al., 2022 : A review of proton exchange membrane fuel cell water management: Membrane electrode assembly, J. Power Sources, 517, 230723.
10.1016/j.jpowsour.2021.230723Omrani, R. and Shabani, B., 2017 : Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers - A review, Int. J. Hydrogen Energy, 42(44), pp.28515-28536.
10.1016/j.ijhydene.2017.09.132Athanasaki, G., Jayakumar, A. and Kannan, A. M., 2023 : Gas diffusion layers for PEM fuel cells: Materials, properties and manufacturing - A review, Int. J. Hydrogen Energy, 48, pp.2294-2313.
10.1016/j.ijhydene.2022.10.058Sim, J., Kang, M., Oh, H., et al., 2022: The effect of gas diffusion layer on electrochemical effective reaction area of catalyst layer and water discharge capability, Renew. Energy, 197, pp.932-942.
10.1016/j.renene.2022.07.096Schwartz, N., Harrington, J., Ziegler, K. J., et al., 2022: Effects of electrode support structure on electrode microstructure, transport properties, and gas diffusion within the gas diffusion layer, ACS Omega, 7(34), pp.30247-30258.
10.1021/acsomega.2c0266936061671PMC9434781Sun, X. and Wang, Z., 2022 : Understanding of the role of carbon fiber paper in proton exchange membrane fuel cells, J. Electrochem. En. Conv. Stor., 19(1), 014501.
10.1115/1.4050043Kim, D. S., Welch, C. and Hjelm, R. P., et al., 2012 : Polymers in membrane electrode assemblies, in Polymer Science: A Comprehensive Reference, Vol. 10, eds. Matyjaszewski, K. and Möller, M., pp.691-717, Elsevier, Amsterdam.
10.1016/B978-0-444-53349-4.00287-9Saka, K., Orhan, M. F. and Hamada, A. T., 2022 : Design and analysis of gas diffusion layers in a proton exchange membrane fuel cell, Coatings, 12(6), 819.
10.3390/coatings13010002Mvokwe, S. A., Oyedeji, O. O., Agoro, M. J., et al., 2025: A critical review of the hydrometallurgy and pyrometallurgical recovery processes of platinum group metals from end‑of‑life fuel cells, Membranes, 15(1), 69.
10.3390/membranes1501001339852254PMC11766938Kim, J., Lee, S.-M., Srinivasan, S., et al., 1999: Modeling of proton exchange membrane fuel cell performance with an empirical equation, J. Power Sources, 87(1-2), pp.273-281.
Boudghene Stambouli, A. and Traversa, E., 2002 : Fuel cells, an alternative to standard sources of energy, Renew. Sust. Energ. Rev., 6, pp.297-306.
10.1016/S1364-0321(01)00015-6Qasem, N. A. A. and Abdulrahman, G. A. Q., 2024 : A recent comprehensive review of fuel cells: History, types, and applications, Int. J. Energy Res., 2024, 7271748.
10.1155/2024/7271748İnci, M. and Türksoy, Ö., 2019 : Review of fuel cells to grid interface: Configurations, technical challenges and trends, J. Clean. Prod., 213, pp.1353-1370.
10.1016/j.jclepro.2018.12.281Peng, Z., Li, Z., Lin, X., et al., 2017: Pyrometallurgical recovery of platinum group metals from spent catalysts, JOM, 69(9), pp.1553-1562.
10.1007/s11837-017-2450-3Zuber, R., Hageleuken, C., Seitz, K., et al., n.d. : Recycling of precious metals from fuel cell components, Umicore AG & Co KG / Umicore USA Inc., Technical Document.
Seo, J., Kwon, J. and Kim, J., 2008 : Effect of carbon dioxide in fuel on the performance of PEMFC, J. Korean Electrochem. Soc., 11(1), pp.42-46.
10.5229/JKES.2008.11.1.042Lee, E. K., Baek, J. H., Lee, J. W., et al., 2016 : A study on hydrogen impurity effect in anode of proton exchange membrane fuel cell on various concentration of CO and H2S, Trans. Korean Hydrogen New Energy Soc., 27(6), pp.670-676.
10.7316/KHNES.2016.27.6.670Lee, Y. H., Kang, H., Jang, Y., et al., 2019 : A study on cation extraction and impurity separation in slag, Clean Technol., 25(4), pp.311-315.
Ferella, F., Ognyanova, A., De Michelis, I., et al., 2011 : Extraction of metals from spent hydrotreating catalysts: Physico‑mechanical pre‑treatments and leaching stage, J. Hazard. Mater., 192, pp.176-185
10.1016/j.jhazmat.2011.05.005Harvey, J.-P., Courchesne, W., Vo, M. D., et al., 2022 : Greener reactants, renewable energies and environmental impact mitigation strategies in pyrometallurgical processes: A review, MRS Energy Sustain., 9, pp.212–247.
10.1557/s43581-022-00042-y36569468PMC9766879Jones, R. T., 2005 : An overview of Southern African PGM smelting, Nickel and Cobalt 2005: Challenges in Extraction and Production, 44th Annual Conference of Metallurgists, pp.147-178.
Balva, M., Legeai, S., Leclerc, N., et al., 2019 : Environmentally friendly recycling of fuel cell’s membrane electrode assembly using ionic liquids, J. Clean. Prod., 239, 118073.
Buazar, F., Almoor, K., Li, Q., et al., 2021 : Durability of Pt/MWCNT nanocatalyst in high-temperature H3PO4/PBI PEMFC, Int. J. Hydrogen Energy, 46(24), pp.12931-12940.
Trinh, H. B., Lee, J. C., Suh, Y. J., et al., 2020 : A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy, Waste Manag., 114, pp.148-165.
10.1016/j.wasman.2020.06.030Shen, H. and Forssberg, E., 2003 : An overview of recovery of metals from slags, Waste Manag., 23(10), pp.933-949.
10.1016/S0956-053X(02)00164-2Kirubakaran, A., Jain, S. and Nema, R. K., 2009 : A review on fuel cell technologies and power electronic interface, Renew. Sustain. Energy Rev., 13(9), pp.2430-2440.
10.1016/j.rser.2009.04.004Faes, A., Jeangros, Q., Wagner, J. B., et al., 2009 : In situ reduction and oxidation of nickel from solid oxide fuel cells in a transmission electron microscope, ECS Trans., 25, pp.1985.
10.1149/1.3205743Zakaryan, M. K., Amirkhanyan, N. H., Nazaretyan, K. T., et al., 2023 : Combustion synthesis mechanism of the Ni(NO3)2 + hexamethylenetetramine solutions to prepare nickel nanomaterials, Combust. Flame, 257, 113049.
10.1016/j.combustflame.2023.113049Shang, S. L., Lin, S., Gao, M. C., et al., 2024 : Ellingham diagrams of binary oxides, APL Mater., 12, 081110.
10.1063/5.0216426Chong, X., Yu, W., Liang, Y., et al., 2023 : Understanding oxidation resistance of Pt‑based alloys through computations of Ellingham diagrams with experimental verifications, J. Mater. Inf., 3(21).
10.20517/jmi.2023.17Keyworth, B., 1983 : The role of pyrometallurgy in the recovery of precious metals from secondary materials, Proc. of the 6th Int. Precious Metals Institute Conf., pp. 509-537, International Precious Metals Institute, Newport Beach, California, 7-11 June 1982, Elsevier, Amsterdam.
10.1016/B978-0-08-025396-1.50044-0He, X., Ding, Y., Shi, Z., et al., 2024 : Optimization of synergistic capturing platinum group metals by Fe–Sn and its mechanism, J. Environ. Manage., 358, 120847.
10.1016/j.jenvman.2024.120847Zheng, H., Ding, Y., Wen, Q., et al., 2022 : Slag design and iron capture mechanism for recovering low‑grade Pt, Pd, and Rh from leaching residue of spent auto‑exhaust catalysts, Sci. Total Environ., 802, 149830.
10.1016/j.scitotenv.2021.149830Peng, Z., Li, Z., Lin, X., et al., 2018 : Thermodynamic Analysis of Smelting of Spent Catalysts for Recovery of Platinum Group Metals, Proc. of the TMS Annual Meeting & Exhibition 2018, pp.215–228, The Minerals, Metals & Materials Society (TMS), Phoenix, Arizona, 11–15 March 2018, Springer, Cham.
10.1007/978-3-319-72138-5_22Karlemo, B. and Taskinen, P., 2000 : The impact of silica to a SiO2-MgO-FexO slag, Proc. of Intern. Conf. on the Slag Studies, pp.1-13, Outokumpu Research Oy, Outokumpu, Finland, 3 May 2000.
Wang, D., Ma, K., Xu, Y., et al., 2017 : Influences of CaO/SiO2/MgO/Al2O3 on the formation behavior of FeO-bearing primary-slags in blast furnace, Proc. of Intern. Conf. on the Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies, The Minerals, Metals & Materials Series, pp.251-258, The Minerals, Metals & Materials Society (TMS), San Diego, California, 26 February-2 March 2017, Springer, Cham.
10.1007/978-3-319-51091-0_23Kim, Y. and Min, D.-J., 2021 : Viscosity and structural investigation of high-concentration Al2O3 and MgO slag system for FeO reduction in electric arc furnace processing, Metals, 11(8), 1169.
10.3390/met11081169Ma, N., Choi, C. E. and Zhang, J., 2023 : Towards sustainable stabilization: Sodium carbonate tunning the strength development of dredged sediments stabilized with alkali-activated ground granulated blast-furnace slag, Research Square, Preprint.
10.21203/rs.3.rs-3466252/v1Yuan, B., Yu, Q. L. and Brouwers, H. J. H., 2017 : Evaluation of slag characteristics on the reaction kinetics and mechanical properties of Na2CO3 activated slag, Constr. Build. Mater., 131, pp.334-346.
10.1016/j.conbuildmat.2016.11.074Wu, L., Gran, J. and Sichen, D., 2011 : The effect of calcium fluoride on slag viscosity, Metall. Mater. Trans. B, 42(4), pp.654-661.
10.1007/s11663-011-9546-xTang, H., Peng, Z., Tian, R., et al., 2022 : Recycling of platinum-group metals from spent automotive catalysts by smelting, J. Environ. Chem. Eng., 10, 108709.
10.1016/j.jece.2022.108709Liu, C., Sun, S., Tu, G., et al., 2021 : A novel method for extraction of platinum from spent automotive catalyst: Utilization of spent fluid catalytic cracking catalyst as flux, J. Chem. Technol. Biotechnol., 96(6), pp.139-149.
10.1080/09593330.2021.1965662East Carbon, Types of Electric Arc Furnace. https://www.eastcarb.com/electric-arc-furnace/#Types_of_Electric_Arc_Furnace, May 30, 2025.
Lei, J., Yuan, G., Weerachanchai, P., et al., 2018 : Investigation on thermal dechlorination and catalytic pyrolysis in a continuous process for liquid fuel recovery from mixed plastic wastes, J. Mater. Cycles Waste Manag., 20, pp.137-146.
10.1007/s10163-016-0555-3Ruan, D., Zou, K., Du, K., et al., 2021 : Recycling of graphite anode from spent lithium-ion batteries for preparing Fe-N-doped carbon ORR catalyst, ChemCatChem, 13(4), pp.1155-1162.
10.1002/cctc.202001867Corin, K. C., McFadzean, B. J., Shackleton, N. J., et al., 2021 : Challenges related to the processing of fines in the recovery of platinum group minerals (PGMs), Minerals, 11(6), 533.
10.3390/min11050533Aspola, L., Matusewicz, R., Haavanlammi, K., et al., 2012 : Outotec smelting solutions for the PGM industry, The Southern African Institute of Mining and Metallurgy, Platinum 2012, pp.1-10.
Friedrich, B., Kalisch, M., Friedmann, D., et al., 2018 : The submerged arc furnace (SAF): State-of-the-art metal recovery from nonferrous slags, J. Sustain. Metall., 4, pp.77-94.
10.1007/s40831-017-0153-1Liu, C., Sun, S. and Tu, G., 2020 : Metals smelting-collection method for recycling of platinum group metals from waste catalysts: A mini review, Waste Manag. Res., 39(1), pp.3-12.
10.1177/0734242X20969795Panda, R., Jha, M. K. and Pathak, D. D., 2018 : Commercial processes for the extraction of platinum group metals (PGMs), Proc. of Intern. Conf. on the Rare Metal Technology, The Minerals, Metals & Materials Series, pp.119-130, The Minerals, Metals & Materials Society (TMS), Phoenix, Arizona, 11-15 March 2018, Springer, Cham.
10.1007/978-3-319-72350-1_11Sciencetory, What Happens Inside an Electric Arc Furnace. https://contents.premium.naver.com/sciencetory/now/contents/241001005221499ip, May 30, 2025.
Guo, X., Yu, J., Hou, Y., et al., 2018 : Manganese removal from liquid nickel by hydrogen plasma arc melting, Materials, 11(12), 2539.
10.3390/ma1201003330583510PMC6337390Tang, H., Peng, Z., Li, Z., et al., 2021 : Recovery of platinum-group metals from spent catalysts by microwave smelting, J. Clean. Prod., 318, 128266.
10.1016/j.jclepro.2021.128266Mizuno, N., Kosai, S. and Yamasue, E., 2021 : Microwave-based extractive metallurgy to obtain pure metals: A review, Clean. Eng. Technol., 5, 100306.
10.1016/j.clet.2021.100306Kwon, Y. S., Lee, J. C., Shin, D. Y., et al., 2014 : A review on recycling of spent autocatalyst in Korea, J. Korean Inst. Resour. Recycl., 23(1), pp.3-16.
10.7844/kirr.2014.23.1.3- Publisher :The Korean Institute of Resources Recycling
- Publisher(Ko) :한국자원리싸이클링학회
- Journal Title :Resources Recycling
- Journal Title(Ko) :자원리싸이클링
- Volume : 34
- No :4
- Pages :15-30
- Received Date : 2025-07-23
- Revised Date : 2025-08-14
- Accepted Date : 2025-08-20
- DOI :https://doi.org/10.7844/kirr.2025.34.4.15


Resources Recycling







