All Issue

2021 Vol.30, Issue 2 Preview Page

Research Paper

April 2021. pp. 14-23
Abstract
References
1
Korea Resources Corporation (KORES), 2008 : https://www.kmrgis.net/kmrgis/MRPresentCondition/MRPC0101_popup.aspx?category=undefined.
2
Korea Resources Corporation (KORES), 2019 : https://www.kmrgis.net/kmrgis/MRPresentCondition/MRPC0101.aspx?menuID=MRP.C01.
3
Korea Institute of Geoscience and Mineral Resources (KIGAM), 2019 : https://www.kigam.re.kr/menu.es?mid=a30102010510.
4
Korea Resources Corporation (KORES), 2020 : https://www.kores.or.kr/views/cms/hkor/bi/bi01/bi0104.jsp.
5
Kesler, S. E., Simon, A. C., Simon, A. F., 2015 : Mineral resources, economics and the environment, Cambridge University Press. 10.1017/CBO9781139871426
6
Gahan, C. S., Srichandan, H., Kim, D.-J., et al., 2012 : Biohydrometallurgy and biomineral processing technology: a review on its past, present and future, Research Journal of Recent Sciences, 1(10), pp.85-99.
7
Mahmoud, A., Cézac, P., Hoadley, A. F. A., et al., 2017 : A review of sulfide minerals microbially assisted leaching in stirred tank reactors, International Biodeterioration & Biodegradation, 119, pp.118-146. 10.1016/j.ibiod.2016.09.015
8
Kim, G., Park, K., Choi, J., et al., 2015 : Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow, International Journal of Mineral Processing, 143, pp.98-104. 10.1016/j.minpro.2015.09.012
9
Kim, G., Choi, J., Silva, R. A., et al., 2017 : Feasibility of bench-scale selective bioflotation of copper oxide minerals using Rhodococcus opacus, Hydrometallurgy, 168, pp.94- 102. 10.1016/j.hydromet.2016.06.029
10
Yin, S., Wang, L., Wu, A., et al., 2018 : Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria, Journal of Cleaner Production, 189, pp.746-753. 10.1016/j.jclepro.2018.04.116
11
Wang, X., Ma, L., Wu, J., et al., 2020 : Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments, Bioresource Technology, 308, pp.123273. 10.1016/j.biortech.2020.12327332247948
12
Panda, S., Sanjay, K., Sukla, L. B., et al., 2012 : Insights into heap bioleaching of low grade chalcopyrite ores - A pilot scale study, Hydrometallurgy, 125-126, pp.157-165. 10.1016/j.hydromet.2012.06.006
13
Scheinberg, I. H., Sternlieb, I., 1996 : Wilson disease and idiopathic copper toxicosis, The American Journal of Clinical Nutrition, 63(5), pp.842S-845S. 10.1093/ajcn/63.5.8428615372
14
Vassallo, D. V., Simões, M. R., Furieri, L. B., et al., 2011 : Toxic effects of mercury, lead and gadolinium on vascular reactivity, Brazilian Journal of Medical and Biological Research, 44, pp.939-946. 10.1590/S0100-879X201100750009821845340
15
Plum, L. M., Rink, L., Haase, H., 2010 : The essential toxin: impact of zinc on human health, International Journal of Environmental Research and Public Health, 7(4), pp.1342-1365. 10.3390/ijerph704134220617034PMC2872358
16
Saha, J. C., Dikshit, A. K., Bandyopadhyay, M., et al., 1999 : A review of arsenic poisoning and its effects on human health, Critical Reviews in Environmental Science and Technology, 29(3), pp.281-313. 10.1080/10643389991259227
17
Bryner, L. C., Jameson, A. K., 1958 : Microorganisms in leaching sulfide minerals, Appl Microbiol, 6(4), pp.281-287. 10.1128/AM.6.4.281-287.195813559982PMC1057411
18
Lundgren, D. G., Silver, M., 1980 : Ore leaching by bacteria, Annual Review of Microbiology, 34(1), pp.263-283. 10.1146/annurev.mi.34.100180.0014037002025
19
Schippers, A., Sand, W., 1999 : Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur, Applied and Environmental Microbiology, 65(1), pp.319-321. 10.1128/AEM.65.1.319-321.19999872800PMC91023
20
Ehrlich, H., 2004 : Beginnings of rational bioleaching and highlights in the development of biohydrometallurgy: A brief history, European Journal of Mineral Processing & Environmental Protection, 4(2), pp.102-112.
21
Zeng, L., Huang, J., Zhang, Y., et al., 2008 : An effective method of DNA extraction for bioleaching bacteria from acid mine drainage, Applied Microbiology and Biotechnology, 79(5), pp.881. 10.1007/s00253-008-1491-518481056
22
Mishra, D., Kim, D., Ahn, J., et al., 2005 : Bioleaching: A microbial process of metal recovery; A review, Metals and Materials International, 11(3), pp.249-256. 10.1007/BF03027450
23
Nguyen, V. K., Lee, M., Park, H., et al., 2015 : Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp., Journal of Industrial and Engineering Chemistry, 21, pp.451-458. 10.1016/j.jiec.2014.03.004
24
Baker, B. J., Banfield, J. F., 2003 : Microbial communities in acid mine drainage, FEMS Microbiology Ecology, 44(2), pp.139-152. 10.1016/S0168-6496(03)00028-X
25
Bosecker, K., 1997 : Bioleaching: Metal solubilization by microorganisms, FEMS Microbiology Reviews, 20(3-4), pp.591-604. 10.1111/j.1574-6976.1997.tb00340.x
26
Seifelnassr, A. A. S., Abouzeid, A. M., 2013 : Exploitation of bacterial activities in mineral industry and environmental preservation: An overview, Journal of Mining, 2013, pp.507168. 10.1155/2013/507168
27
Collinet, M. N., Morin, D., 1990 : Characterization of arsenopyrite oxidizing Thiobacillus, Tolerance to arsenite, arsenate, ferrous and ferric iron, Antonie van Leeuwenhoek, 57(4), pp.237-244. 10.1007/BF004001552191624
28
Komnitsas, C., Pooley, F. D., 1990 : Bacterial oxidation of an arsenical gold sulphide concentrate from Olympias, Greece, Minerals Engineering, 3(3), pp.295-306. 10.1016/0892-6875(90)90125-U
Information
  • Publisher :The Korean Institute of Resources Recycling
  • Publisher(Ko) :한국자원리싸이클링학회
  • Journal Title :Resources Recycling
  • Journal Title(Ko) :자원리싸이클링
  • Volume : 30
  • No :2
  • Pages :14-23
  • Received Date :2020. 12. 10
  • Revised Date :2021. 02. 10
  • Accepted Date : 2021. 02. 17