All Issue

2021 Vol.30, Issue 4 Preview Page
August 2021. pp. 11-19
Abstract
References
1
U.S. Geological Survey, 2020 : Mineral commodity summaries 2020, U.S. Geological Survey.
2
Marsden, J.O., and House, C.I., 2006 : The Chemistry of Gold Extraction, 2nd Edition, SME, Co, USA.
3
Rodriguez-Freire, L., Moore, S.E., Sierra-Alvarez, R., et al., 2016 : Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor, Biotechnology and Bioengineering, 113(3), pp.522-530. 10.1002/bit.2582526333155PMC4729605
4
Wu, C., Mahandra, H., Radzinski, R., et al., 2020 : Green catalytic process for in situ oxidation of Arsenic(III) in concentrated streams using activated carbon and oxygen gas, Chemosphere, 261, 127688. 10.1016/j.chemosphere.2020.12768832721688
5
Wu, C., Mahandra, H., Ghahreman, A., 2020 : Novel continuous column process for As(III) oxidation from concentrated acidic solutions with activated carbon catalysis, Industrial and Engineering Chemistry Research, 59, pp. 9882-9889. 10.1021/acs.iecr.0c00470
6
Jain, C.K. and Ali, I., 2000 : Arsenic: Occurrence, toxicity and speciation techniques, Water Research, 34(17), pp.4304- 4312. 10.1016/S0043-1354(00)00182-2
7
Bissen, M. and Frimmel, F.H., 2003 : Arsenic - a Review. Part I : Occurrence, toxicity, speciation, mobility, Acta hydrochimica et hydrobiologica, 31(1), pp.9-18. 10.1002/aheh.200390025
8
Nazari, A., Radzinski, R., Ghahreman, A., 2016 : Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic, Hydrometallurgy, 174, pp. 258-281. 10.1016/j.hydromet.2016.10.011
9
Filippou, D. and Demopoulos, G.P., 1997 : Arsenic immobilization by controlled scorodite precipitation, JOM, 49, pp.52-55. 10.1007/s11837-997-0034-3
10
Ruonala, M., Leppinen, J., Miettinen, V., 2014 : US. 8790516B2.
11
Choi, Y., Ghahremaninezhad, A., Ahern, N., 2014 : US. 20140356261A1.
12
Fujita, T., Taguchi, R., Abumiya, M., et al., 2009 : Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions : Physical properties and stability of the scorodite, Hydrometallurgy, 96, pp.189-198. 10.1016/j.hydromet.2008.10.003
13
Kim, G., Kim, R., You, K., et al., 2021 : Leaching behavior of heavy metals from an ore containing high concentration As utilizing Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, Resources Recycling, 30(2), pp.14-23.
14
Lorenzen, L., van Deventer, J.S.J., Landi, W.M., 1995 : Factors affecting the mechanism of the adsorption of arsenic species on activated carbon, Minerals Engineering, 8(4-5), pp.557-569. 10.1016/0892-6875(95)00017-K
15
Bluteau, M.-C. and Demopoulos, G.P., 2007 : The incongruent dissolution of scorodite - Solubility, kinetics and mechanism, Hydrometallurgy, 87, pp.163-177. 10.1016/j.hydromet.2007.03.003
16
Zhu, X., Nordstrom, D.K., McCleskey, R.B., et al., 2019 : On the thermodynamics and kinetics of scorodite dissolution, Geochimical et Cosmochimica Acta, 265, pp.468- 477. 10.1016/j.gca.2019.09.012
Information
  • Publisher :The Korean Institute of Resources Recycling
  • Publisher(Ko) :한국자원리싸이클링학회
  • Journal Title :Resources Recycling
  • Journal Title(Ko) :자원리싸이클링
  • Volume : 30
  • No :4
  • Pages :11-19
  • Received Date :2021. 04. 01
  • Revised Date :2021. 05. 31
  • Accepted Date : 2021. 06. 01