All Issue

2022 Vol.31, Issue 5 Preview Page

Research Paper

31 October 2022. pp. 34-41
Abstract
References
1
Swain, B., 2017 : Recovery and recycling of lithium: A review. Separation and Purification Technology, 172, pp.388-403. 10.1016/j.seppur.2016.08.031
2
Zhang, P., Yokoyama, T., Itabashi, O., et al., 1998 : Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy, 47(2-3), pp.259-271. 10.1016/S0304-386X(97)00050-9
3
Joo, S.H., Shin, D.J., Oh, C.H., et al., 2015 : Selective extraction of nickel from cobalt, manganese and lithium in pretreated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I, Hydrometallurgy, 159, pp.65-74. 10.1016/j.hydromet.2015.10.012
4
Sonoc, A., Jeswiet, J., Soo, V. K., 2015: Opportunities to Improve Recycling of Automotive Lithium Ion Batteries, Procedia CIRP, 29, pp.752-757. 10.1016/j.procir.2015.02.039
5
Nguyen, T.T.H., Tran, T.T., Lee, M.S., 2022. A Modified Process for the Separation of Fe(III) and Cu(II) from the Sulfuric Acid Leaching Solution of Metallic Alloys of Reduction Smelted Spent Lithium-ion Batteries, Journal of The Korean Institute of Resources Recycling, 31(1), pp.12-20. 10.7844/kirr.2022.31.1.12
6
Tran, T.T., Moon, H.S., Lee, M.S., 2021 : Co, Ni, Cu, Fe, and Mn integrated recovery process via sulphuric acid leaching from spent lithium-ion batteries smelted reduction metallic alloys, Mineral Processing and Extractive Metallurgy Review, 43(8), pp.954-968. 10.1080/08827508.2021.1979541
7
Tran, T.T, Sohn, S.H., Lee, M.S., 2022 : Recovery of High-Purity Lithium Compounds from the Dust of the Smelting Reduction Process for Spent Lithium-Ion Batteries, Korean Journal of Metals and Materials, 60(4), pp.1-10. 10.3365/KJMM.2022.60.4.291
8
James, G., 2005 : Lange’s Handbook of Chemistry, 16th Edition, McGraw-Hill Education, New York, pp.1322-1323.
9
Cai, W., Chen, R., Yang, Y., et al., 2018 : Removal of SO42− from Li2CO3 by Recrystallization in Na2CO3 Solution, Crystals, 8(1), pp.19. 10.3390/cryst8010019
10
De Vasconcellos, M. E., da Rocha, S. M. R., Pedreira, W. R., et al., 2008 : Solubility behavior of rare earths with ammonium carbonate and ammonium carbonate plus ammonium hydroxide: Precipitation of their peroxicarbonates, Journal of Alloys and Compounds, 451(1-2), pp.426-428. 10.1016/j.jallcom.2007.04.163
11
Aghaie, M., Ghafoorian, S., Broojeni, B. Sh., et al., 2009 : The effect of dielectric constant and ionic strength on the solubility of lithium carbonate at 25.0°C in thermodynamic view, Journal of Physical and Theoretical Chemistry, 5(4), pp.47-52.
12
Mohsen-Nia, M., Amiri, H., & Jazi, B., 2010 : Dielectric Constants of Water, Methanol, Ethanol, Butanol and Acetone: Measurement and Computational Study, Journal of Solution Chemistry, 39(5), pp.701-708. 10.1007/s10953-010-9538-5
13
Grubb, H. M., Chittum, J. F., & Hunt, H., 1936 : Liquid Ammonia as a Solvent. VI. The Dielectric Constant of Liquid Ammonia, Journal of the American Chemical Society, 58(5), pp.776-776. 10.1021/ja01296a026
14
Fresneau, A., Danger, G., Rimola, A., et al., 2014 : Trapping in water - an important prerequisite for complex reactivity in astrophysical ices: the case of acetone (CH3)2C = O and ammonia NH3, Monthly Notices of the Royal Astronomical Society, 443(4), pp.2991-3000. 10.1093/mnras/stu1353
Information
  • Publisher :The Korean Institute of Resources Recycling
  • Publisher(Ko) :한국자원리싸이클링학회
  • Journal Title :Resources Recycling
  • Journal Title(Ko) :자원리싸이클링
  • Volume : 31
  • No :5
  • Pages :34-41
  • Received Date : 2022-08-23
  • Revised Date : 2022-09-27
  • Accepted Date : 2022-10-05