Article Review
Global Citric Acid Market Outlook, n.d. https://www.expertmarketresearch.com/reports/citric-acid-market, April 22, 2024.
M. Berovic, M. Legisa, 2007 : Citric acid production, Biotechnology Annual Review, 13, pp.303-343.
10.1016/S1387-2656(07)13011-817875481B. Igliński, Urszula K., Grzegorz P., 2022 : Proecological aspects of citric acid technology, Technologies and Environmental Policy, 24(9), pp.2061-2079.
10.1007/s10098-022-02316-yMores S., de Souza Vandenberghe L. P., 2021 : Citric acid bioproduction and downstream processing : Status, opportunities, and challenges, Bioresource Technology, 320, pp.124426.
10.1016/j.biortech.2020.12442633249260B. C. Behera, 2020 : Citric acid from Aspergillus niger: a comprehensive overview, Critical Reviews in Microbiology, 46(6), pp.727-749.
10.1080/1040841X.2020.182881533044884Itzel A. Cruz-Rodriguez, Norma G. Rojas-Avelizapa, Andrea M. Rivas-Castillo, 2022 : Microbially-produced organic acids as leaching agents for metal recovery process, Advancements of Microbiology, 61(4), pp.179-190.
10.2478/am-2022-019X. Chen, L. Cao, D. Kang, et al., 2015 : Hydrometallurgical Processes for Valuable Metals Recycling from Spent Lithium-Ion Batteries, Waste Management, 38, pp.349-356.
10.1016/j.wasman.2014.12.02325619126Fan B., Chen X., Zhou T., et al., 2016 : A sustainable process for the recovery of valuable metals from spent lithium-ion batteries, Waste Manage. Res., 34, pp.474-481.
10.1177/0734242X1663445426951340Musariri B., Akdogan G., Dorfling C., et al., 2019 : Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries, Miner. Eng., 137, pp.108-117.
10.1016/j.mineng.2019.03.027Meng F., Liu Q., Rina K., et al., 2020 : Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: Leaching optimization and kinetic analysis, Hydrometallurgy, 191, pp.105160.
10.1016/j.hydromet.2019.105160Golmohammadzadeh R., Faraji F., Rashchi F., 2018 : Recovery of lithium and cobalt from spent lithium ion batteries(LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136, pp.418-435.
10.1016/j.resconrec.2018.04.024J. J. Roy, B. Cao, S. Madhavi, 2021 : A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach, Chemosphere, 282, pp.130944.
10.1016/j.chemosphere.2021.13094434087562P. Moazzam, Y. Boroumand, P. Rabiei, et al., 2021 : Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries, Chemosphere, 277, pp.130196.
10.1016/j.chemosphere.2021.13019633784558Horeh N. B., Mousavi S. M., Shojaosadati S. A., 2016 : Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger, J. Power Sources, 320, pp.257-266.
10.1016/j.jpowsour.2016.04.104Gerold E., Schinnerl C., Antrekowitsch H., 2022 : Critical Evaluation of the Potential of Organic Acids for the Environmentally Friendly Recycling of Spent Lithium-Ion Batteries, Recycling, 7(4), pp.1-16.
10.3390/recycling7010004Hongjian Z., Jian X., Xianfeng S., et al., 2017 : Citric acid production by recycling its wastewater treated with anaerobic digestion and nanofiltration, Process Biochemistry, 58, pp.245-251.
10.1016/j.procbio.2017.04.022Amato A., Becci A., Beolchini F., 2020 : Citric acid bioproduction: the technological innovation change, Crit. Rev. Biotechnol., 40, pp.199-212.
10.1080/07388551.2019.170979931903797Garry D., Satinder K. B., Mausam V., et al., 2011 : Recent Advances in Citric Acid Bio-production and Recovery, Food Bioprocess Technol., 4, pp.505-529.
10.1007/s11947-010-0399-0Straathof A. J. J., 2011 : The Proportion of Downstream Costs in Fermentative Production Processes, in: Comprehensive Biotechnology, pp.811-814., 2nd Edition, Elsevier Inc., Noord-Holland, Netherlands.
10.1016/B978-0-08-088504-9.00492-XHarrison R. G., Todd P. W., Rudge S. R., et al., 2015 : Bioseparations science and engineering, 2nd, Oxford University Press, New York, USA
10.1093/oso/9780195391817.001.0001M. Pazouki, T. Panda, 1998 : Recovery of citric acid-a review, Bioprocess Engineering, 19, pp.435-439.
10.1007/PL00009029Shishikura A., Kimbara H., Yamaguchi K., et al., 1992 : Process For Recovering High purity Organic Acid, EP 0477928.
Yeon Ki Hong, Won Hi Hong, and Dong Hoon Han, 2001. Application of Reactive Extraction to Recovery of Carboxylic Acids, Biotechnol. Bioprocess Eng., 6, pp.386-394.
10.1007/BF02932319Rani, K. N. P., Kumar, T. P., Murthy, J. S. N., et al., 2010 : Equilibria, Kinetics, and Modeling of Extraction of Citric Acid from Aqueous Solutions with Alamine 336 in 1-Octanol, Sep. Sci. Technol., 45, pp.654-662.
10.1080/01496390903566804Thakre, N., Prajapati, A. K., Mahapatra, S. P., et al., 2016. Modeling and Optimization of Reactive Extraction of Citric Acid. J. Chem. Eng. Data, 61, pp.2614-2636.
10.1021/acs.jced.6b00274Bízek V., Horáček J., Koušová M., et al., 1993 : Amine extraction of citric acid: effect of diluent, Chem. Eng. Sci., 48, pp.1447-1457.
10.1016/0009-2509(93)80051-QDatta D., Aşçı Y. S., Tuyun A. F., et al., 2015a : Intensification of citric acid extraction by a mixture of trioctylamine and tridodecylamine in different diluents, J. Chem. Eng. Data, 60, pp.960-965.
10.1021/je5010577W. Takatsuji, H. Yoshida, 1997 : Adsorption of Organic Acids on Weakly Basic Ion Exchanger: Equilibria, J. Chem. Eng. Japan, 30(3), pp.396-405.
10.1252/jcej.30.396Wennersten R., 1983 : The extraction of citric acid from fermentation broth using a solution of a tertiary amine, J. Chem. Technol. Biotechnol., 33, pp.85-94.
10.1002/jctb.280330202Keshav A., Norge P., Wasewar K. L., 2012 : Reactive Extraction of Citric Acid Using Tri-n-octylamine in Nontoxic Natural Diluents : Part 1 - Equilibrium Studies from Aqueous Solutions, Appl. Biochem. Biotechnol., 167, pp.197-213.
10.1007/s12010-012-9682-z22538984Liu L., Wei Q., Zhou Y., et al., 2020 : Using dialkyl amide via forming hydrophobic deep eutectic solvents to separate citric acid from fermentation broth, Green Chem., 22, pp.2526-2533.
10.1039/C9GC04401ARongjie L., Shenglong P., Haitao S., 2017 : Extracting and separating method for organic acid, CN107281778A.
P. Gluszcz, T. Jamroz, B. Sencio, et al., 2004 : Equilibrium and dynamic investigations of organic acids adsorption onto ion-exchange resins, Bioprocess and Biosystems Engineering, 26, pp.185-190.
10.1007/s00449-003-0348-714997373M. Van den Bergh, B. Van de Voorde, D. De Vos, 2017 : Adsorption and Selective Recovery of Citric Acid with Poly(4-vinylpyridine), ChemSusChem, 10, pp.4864-4871.
10.1002/cssc.20170167229064637C. Jacinto, E. Ramos, D. López, 2020 : Citric Acid Recovery from a Synthetic Fermentation Broth by Ion Exchange Resin, BISTUA Rev. FCB, 18(2), pp.9-14.
10.24054/bistua.v18i2.822Wu J., Oijun P., Wolfgang A., et al., 2009 : Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth, J. Chromatogr. A, 1216, pp.8793-8805.
10.1016/j.chroma.2009.03.02819344909Delgado Dobladez J. A., Vincente ismael A. M., Dora Lucia U. S., et al., 2019 : Citric Acid Purification by Simulated Moving Bed Adsorption with Methanol as Desorbent, Sep. Sci. Technol., 54, pp.930-942.
10.1080/01496395.2018.1524909Wang J., Cui Z., Li Y., et al., 2020 : Techno-economic analysis and environmental impact assessment of citric acid production through different recovery methods, J. Clean. Prod., 249, 119315.
10.1016/j.jclepro.2019.119315Handojo L., Wardani A. K., Regina D., et al., 2019 : Electro-membrane processes for organic acid recovery, RSC Adv., 9, pp.7854-7869.
10.1039/C8RA09227C35521162PMC9061277Yeon-Chul Cho, Ki-Hun Kim, Jae-Woo Ahn, 2022 : Application of Electro-membrane for Regeneration of NaOH and H2SO4 from the Spent Na2SO4 Solutions in Metal Recovery Process, Resources Recycling, 31(5), pp.3-19.
10.7844/kirr.2022.31.5.3Jueun Lee, Hongil So, Yeonchul Cho, et al., 2019 : A Study on the Separation and Concentration of Li from Li-Containing Waste Solutions by Electrodialysis, Korean J. Met. Mater., 57(10), pp.656-662.
10.3365/KJMM.2019.57.10.656Luigi Gurreri, Alessandro Tamburini, Andrea Cipollina, 2020 : Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery : A Systematic Review on Progress and Perspectives, Membranes, 10(7), pp.1-93.
10.3390/membranes1007014632660014PMC7408617Novalic S., Jagschits F., Okwor J., et al., 1995 : Behaviour of citric acid during electrodialysis, J. Membrane Sci., 108, pp.201-205.
10.1016/0376-7388(95)00159-XR. Nikbakht, M. Sadrzadeh, T. Mohammadi, 2007 : Effect of operating parameters on concentration of citric acid using electrodialysis, Journal of Food Engineering, 83(4), pp. 596-604.
10.1016/j.jfoodeng.2007.04.010A. Chandra, J. Ganesh Dattatreya Tadimeti, C. Sujay, 2018 : Transport hindrances with electrodialytic recovery of citric acid from solution of strong electrolytes, Chinese Journal of Chemical Engineering, 26(2), pp.278-292.
10.1016/j.cjche.2017.05.010Novalic S., James O., Klaus D. K., 1996 : The characteristics of citric acid separation using electrodialysis with bipolar membranes, Desalination, 105, pp.277-282.
10.1016/0011-9164(96)00083-5Novalic S., Kongbangkerd T., Klaus D. K., 2000 : Recovery of organic acids with high molecular weight using a combined electrodialytic process, J. Membr. Sci., 166, pp.99-104.
10.1016/S0376-7388(99)00247-1P. Pinacci, M. Radaelli, 2002 : Recovery of citric acid from fermentation broths by electrodialysis with bipolar membranes, Desalination, 148, pp.177-179.
10.1016/S0011-9164(02)00674-4Xu T., 2001 : Development of bipolar membrane-based processes, Desalination, 140, pp.247-258.
10.1016/S0011-9164(01)00374-5Xu T., Weihua Y., 2002a : Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis, Journal of Membrane Science, 203(1-2), pp.145-153.
10.1016/S0376-7388(01)00795-5Xu T., Weihua Y., 2002b : Citric acid production by electrodialysis with bipolar membranes, Chemical Engineering and Processing, 41, pp.519-524.
10.1016/S0255-2701(01)00175-1B. Igliński, S. Koter, R. Buczkowski, 2006 : Production of Citric Acid Using Electrodialysis with Bipolar Membrane of Sodium Citrate Solutions, Polish J. of Environ. Stud., 15(3), pp.411-417.
C. Huang, T. Xu, Y. Zhang, et al., 2007 : Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments, Journal of Membrane Science, 288, pp.1-12.
10.1016/j.memsci.2006.11.026Y. Wang, N. Zhang, C. Huang, et al., 2011 : Production of monoprotic, diprotic, and triprotic organic acids by using electrodialysis with bipolar membranes: Effect of cell configurations, J. Membr. Sci., 385-386, pp.226-233.
10.1016/j.memsci.2011.09.044Sun X., Lu H., Wang J., 2016 : Recovery of citric acid from fermented liquid by bipolar membrane electrodialysis, J. Clean. Prod., 143, pp.250-256.
10.1016/j.jclepro.2016.12.118I. N Widiasa, P. D Sutrisna, I. G. Wenten, 2004 : Performance of a novel electrodeionization technique during citric acid recovery, Sep. Purif. Technol., 39, pp.89-97.
10.1016/j.seppur.2003.12.020K. Zhang, M. Wang, D. Wang, et al., 2009 : The energy-saving production of tartaric acid using ion exchange resin-filling bipolar membrane electrodialysis, J. Membr. Sci., 341, pp.246-251.
10.1016/j.memsci.2009.06.010- Publisher :The Korean Institute of Resources Recycling
- Publisher(Ko) :한국자원리싸이클링학회
- Journal Title :Resources Recycling
- Journal Title(Ko) :자원리싸이클링
- Volume : 33
- No :5
- Pages :14-27
- Received Date : 2024-09-05
- Revised Date : 2024-09-23
- Accepted Date : 2024-09-23
- DOI :https://doi.org/10.7844/kirr.2024.33.5.14