All Issue

2024 Vol.33, Issue 5 Preview Page

Article Review

31 October 2024. pp. 14-27
Abstract
References
1

Global Citric Acid Market Outlook, n.d. https://www.expertmarketresearch.com/reports/citric-acid-market, April 22, 2024.

2

M. Berovic, M. Legisa, 2007 : Citric acid production, Biotechnology Annual Review, 13, pp.303-343.

10.1016/S1387-2656(07)13011-817875481
3

B. Igliński, Urszula K., Grzegorz P., 2022 : Proecological aspects of citric acid technology, Technologies and Environmental Policy, 24(9), pp.2061-2079.

10.1007/s10098-022-02316-y
4

Mores S., de Souza Vandenberghe L. P., 2021 : Citric acid bioproduction and downstream processing : Status, opportunities, and challenges, Bioresource Technology, 320, pp.124426.

10.1016/j.biortech.2020.12442633249260
5

B. C. Behera, 2020 : Citric acid from Aspergillus niger: a comprehensive overview, Critical Reviews in Microbiology, 46(6), pp.727-749.

10.1080/1040841X.2020.182881533044884
6

Itzel A. Cruz-Rodriguez, Norma G. Rojas-Avelizapa, Andrea M. Rivas-Castillo, 2022 : Microbially-produced organic acids as leaching agents for metal recovery process, Advancements of Microbiology, 61(4), pp.179-190.

10.2478/am-2022-019
7

X. Chen, L. Cao, D. Kang, et al., 2015 : Hydrometallurgical Processes for Valuable Metals Recycling from Spent Lithium-Ion Batteries, Waste Management, 38, pp.349-356.

10.1016/j.wasman.2014.12.02325619126
8

Fan B., Chen X., Zhou T., et al., 2016 : A sustainable process for the recovery of valuable metals from spent lithium-ion batteries, Waste Manage. Res., 34, pp.474-481.

10.1177/0734242X1663445426951340
9

Musariri B., Akdogan G., Dorfling C., et al., 2019 : Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries, Miner. Eng., 137, pp.108-117.

10.1016/j.mineng.2019.03.027
10

Meng F., Liu Q., Rina K., et al., 2020 : Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: Leaching optimization and kinetic analysis, Hydrometallurgy, 191, pp.105160.

10.1016/j.hydromet.2019.105160
11

Golmohammadzadeh R., Faraji F., Rashchi F., 2018 : Recovery of lithium and cobalt from spent lithium ion batteries(LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136, pp.418-435.

10.1016/j.resconrec.2018.04.024
12

J. J. Roy, B. Cao, S. Madhavi, 2021 : A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach, Chemosphere, 282, pp.130944.

10.1016/j.chemosphere.2021.13094434087562
13

P. Moazzam, Y. Boroumand, P. Rabiei, et al., 2021 : Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries, Chemosphere, 277, pp.130196.

10.1016/j.chemosphere.2021.13019633784558
14

Horeh N. B., Mousavi S. M., Shojaosadati S. A., 2016 : Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger, J. Power Sources, 320, pp.257-266.

10.1016/j.jpowsour.2016.04.104
15

Gerold E., Schinnerl C., Antrekowitsch H., 2022 : Critical Evaluation of the Potential of Organic Acids for the Environmentally Friendly Recycling of Spent Lithium-Ion Batteries, Recycling, 7(4), pp.1-16.

10.3390/recycling7010004
16

Hongjian Z., Jian X., Xianfeng S., et al., 2017 : Citric acid production by recycling its wastewater treated with anaerobic digestion and nanofiltration, Process Biochemistry, 58, pp.245-251.

10.1016/j.procbio.2017.04.022
17

Amato A., Becci A., Beolchini F., 2020 : Citric acid bioproduction: the technological innovation change, Crit. Rev. Biotechnol., 40, pp.199-212.

10.1080/07388551.2019.170979931903797
18

Garry D., Satinder K. B., Mausam V., et al., 2011 : Recent Advances in Citric Acid Bio-production and Recovery, Food Bioprocess Technol., 4, pp.505-529.

10.1007/s11947-010-0399-0
19

Straathof A. J. J., 2011 : The Proportion of Downstream Costs in Fermentative Production Processes, in: Comprehensive Biotechnology, pp.811-814., 2nd Edition, Elsevier Inc., Noord-Holland, Netherlands.

10.1016/B978-0-08-088504-9.00492-X
20

Harrison R. G., Todd P. W., Rudge S. R., et al., 2015 : Bioseparations science and engineering, 2nd, Oxford University Press, New York, USA

10.1093/oso/9780195391817.001.0001
21

M. Pazouki, T. Panda, 1998 : Recovery of citric acid-a review, Bioprocess Engineering, 19, pp.435-439.

10.1007/PL00009029
22

Shishikura A., Kimbara H., Yamaguchi K., et al., 1992 : Process For Recovering High purity Organic Acid, EP 0477928.

23

Yeon Ki Hong, Won Hi Hong, and Dong Hoon Han, 2001. Application of Reactive Extraction to Recovery of Carboxylic Acids, Biotechnol. Bioprocess Eng., 6, pp.386-394.

10.1007/BF02932319
24

Rani, K. N. P., Kumar, T. P., Murthy, J. S. N., et al., 2010 : Equilibria, Kinetics, and Modeling of Extraction of Citric Acid from Aqueous Solutions with Alamine 336 in 1-Octanol, Sep. Sci. Technol., 45, pp.654-662.

10.1080/01496390903566804
25

Thakre, N., Prajapati, A. K., Mahapatra, S. P., et al., 2016. Modeling and Optimization of Reactive Extraction of Citric Acid. J. Chem. Eng. Data, 61, pp.2614-2636.

10.1021/acs.jced.6b00274
26

Bízek V., Horáček J., Koušová M., et al., 1993 : Amine extraction of citric acid: effect of diluent, Chem. Eng. Sci., 48, pp.1447-1457.

10.1016/0009-2509(93)80051-Q
27

Datta D., Aşçı Y. S., Tuyun A. F., et al., 2015a : Intensification of citric acid extraction by a mixture of trioctylamine and tridodecylamine in different diluents, J. Chem. Eng. Data, 60, pp.960-965.

10.1021/je5010577
28

W. Takatsuji, H. Yoshida, 1997 : Adsorption of Organic Acids on Weakly Basic Ion Exchanger: Equilibria, J. Chem. Eng. Japan, 30(3), pp.396-405.

10.1252/jcej.30.396
29

Wennersten R., 1983 : The extraction of citric acid from fermentation broth using a solution of a tertiary amine, J. Chem. Technol. Biotechnol., 33, pp.85-94.

10.1002/jctb.280330202
30

Keshav A., Norge P., Wasewar K. L., 2012 : Reactive Extraction of Citric Acid Using Tri-n-octylamine in Nontoxic Natural Diluents : Part 1 - Equilibrium Studies from Aqueous Solutions, Appl. Biochem. Biotechnol., 167, pp.197-213.

10.1007/s12010-012-9682-z22538984
31

Liu L., Wei Q., Zhou Y., et al., 2020 : Using dialkyl amide via forming hydrophobic deep eutectic solvents to separate citric acid from fermentation broth, Green Chem., 22, pp.2526-2533.

10.1039/C9GC04401A
32

Rongjie L., Shenglong P., Haitao S., 2017 : Extracting and separating method for organic acid, CN107281778A.

33

P. Gluszcz, T. Jamroz, B. Sencio, et al., 2004 : Equilibrium and dynamic investigations of organic acids adsorption onto ion-exchange resins, Bioprocess and Biosystems Engineering, 26, pp.185-190.

10.1007/s00449-003-0348-714997373
34

M. Van den Bergh, B. Van de Voorde, D. De Vos, 2017 : Adsorption and Selective Recovery of Citric Acid with Poly(4-vinylpyridine), ChemSusChem, 10, pp.4864-4871.

10.1002/cssc.20170167229064637
35

C. Jacinto, E. Ramos, D. López, 2020 : Citric Acid Recovery from a Synthetic Fermentation Broth by Ion Exchange Resin, BISTUA Rev. FCB, 18(2), pp.9-14.

10.24054/bistua.v18i2.822
36

Wu J., Oijun P., Wolfgang A., et al., 2009 : Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth, J. Chromatogr. A, 1216, pp.8793-8805.

10.1016/j.chroma.2009.03.02819344909
37

Delgado Dobladez J. A., Vincente ismael A. M., Dora Lucia U. S., et al., 2019 : Citric Acid Purification by Simulated Moving Bed Adsorption with Methanol as Desorbent, Sep. Sci. Technol., 54, pp.930-942.

10.1080/01496395.2018.1524909
38

Wang J., Cui Z., Li Y., et al., 2020 : Techno-economic analysis and environmental impact assessment of citric acid production through different recovery methods, J. Clean. Prod., 249, 119315.

10.1016/j.jclepro.2019.119315
39

Handojo L., Wardani A. K., Regina D., et al., 2019 : Electro-membrane processes for organic acid recovery, RSC Adv., 9, pp.7854-7869.

10.1039/C8RA09227C35521162PMC9061277
40

Yeon-Chul Cho, Ki-Hun Kim, Jae-Woo Ahn, 2022 : Application of Electro-membrane for Regeneration of NaOH and H2SO4 from the Spent Na2SO4 Solutions in Metal Recovery Process, Resources Recycling, 31(5), pp.3-19.

10.7844/kirr.2022.31.5.3
41

Jueun Lee, Hongil So, Yeonchul Cho, et al., 2019 : A Study on the Separation and Concentration of Li from Li-Containing Waste Solutions by Electrodialysis, Korean J. Met. Mater., 57(10), pp.656-662.

10.3365/KJMM.2019.57.10.656
42

Luigi Gurreri, Alessandro Tamburini, Andrea Cipollina, 2020 : Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery : A Systematic Review on Progress and Perspectives, Membranes, 10(7), pp.1-93.

10.3390/membranes1007014632660014PMC7408617
43

Novalic S., Jagschits F., Okwor J., et al., 1995 : Behaviour of citric acid during electrodialysis, J. Membrane Sci., 108, pp.201-205.

10.1016/0376-7388(95)00159-X
44

R. Nikbakht, M. Sadrzadeh, T. Mohammadi, 2007 : Effect of operating parameters on concentration of citric acid using electrodialysis, Journal of Food Engineering, 83(4), pp. 596-604.

10.1016/j.jfoodeng.2007.04.010
45

A. Chandra, J. Ganesh Dattatreya Tadimeti, C. Sujay, 2018 : Transport hindrances with electrodialytic recovery of citric acid from solution of strong electrolytes, Chinese Journal of Chemical Engineering, 26(2), pp.278-292.

10.1016/j.cjche.2017.05.010
46

Novalic S., James O., Klaus D. K., 1996 : The characteristics of citric acid separation using electrodialysis with bipolar membranes, Desalination, 105, pp.277-282.

10.1016/0011-9164(96)00083-5
47

Novalic S., Kongbangkerd T., Klaus D. K., 2000 : Recovery of organic acids with high molecular weight using a combined electrodialytic process, J. Membr. Sci., 166, pp.99-104.

10.1016/S0376-7388(99)00247-1
48

P. Pinacci, M. Radaelli, 2002 : Recovery of citric acid from fermentation broths by electrodialysis with bipolar membranes, Desalination, 148, pp.177-179.

10.1016/S0011-9164(02)00674-4
49

Xu T., 2001 : Development of bipolar membrane-based processes, Desalination, 140, pp.247-258.

10.1016/S0011-9164(01)00374-5
50

Xu T., Weihua Y., 2002a : Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis, Journal of Membrane Science, 203(1-2), pp.145-153.

10.1016/S0376-7388(01)00795-5
51

Xu T., Weihua Y., 2002b : Citric acid production by electrodialysis with bipolar membranes, Chemical Engineering and Processing, 41, pp.519-524.

10.1016/S0255-2701(01)00175-1
52

B. Igliński, S. Koter, R. Buczkowski, 2006 : Production of Citric Acid Using Electrodialysis with Bipolar Membrane of Sodium Citrate Solutions, Polish J. of Environ. Stud., 15(3), pp.411-417.

53

C. Huang, T. Xu, Y. Zhang, et al., 2007 : Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments, Journal of Membrane Science, 288, pp.1-12.

10.1016/j.memsci.2006.11.026
54

Y. Wang, N. Zhang, C. Huang, et al., 2011 : Production of monoprotic, diprotic, and triprotic organic acids by using electrodialysis with bipolar membranes: Effect of cell configurations, J. Membr. Sci., 385-386, pp.226-233.

10.1016/j.memsci.2011.09.044
55

Sun X., Lu H., Wang J., 2016 : Recovery of citric acid from fermented liquid by bipolar membrane electrodialysis, J. Clean. Prod., 143, pp.250-256.

10.1016/j.jclepro.2016.12.118
56

I. N Widiasa, P. D Sutrisna, I. G. Wenten, 2004 : Performance of a novel electrodeionization technique during citric acid recovery, Sep. Purif. Technol., 39, pp.89-97.

10.1016/j.seppur.2003.12.020
57

K. Zhang, M. Wang, D. Wang, et al., 2009 : The energy-saving production of tartaric acid using ion exchange resin-filling bipolar membrane electrodialysis, J. Membr. Sci., 341, pp.246-251.

10.1016/j.memsci.2009.06.010
58

A. Rehouma, B. Belaissaoui, A. Hannachi, et al., 2013 : Bipolar membrane electrodialysis and ion exchange hybridizing for dilute organic acid solutions treatment, Desalination and Water Treatment, 51, pp.511-517.

10.1080/19443994.2012.715421
59

M. Jaouadi, J. Ding, A. Hannachi, et al., 2017 : IEX and BMED hybrid process for dilute organic acids recovery: identification of key steps to manage energy consumption, Desalination and Water Treatment, 69, pp.123-129.

10.5004/dwt.2017.11373
Information
  • Publisher :The Korean Institute of Resources Recycling
  • Publisher(Ko) :한국자원리싸이클링학회
  • Journal Title :Resources Recycling
  • Journal Title(Ko) :자원리싸이클링
  • Volume : 33
  • No :5
  • Pages :14-27
  • Received Date : 2024-09-05
  • Revised Date : 2024-09-23
  • Accepted Date : 2024-09-23