All Issue

2022 Vol.31, Issue 3 Preview Page

Article Review

30 June 2022. pp. 27-39
Abstract
References
1
Xie, J. and Y.-C. Lu, 2020 : A retrospective on lithium-ion batteries, Nature Communications, 11(1), pp.2499. 10.1038/s41467-020-16259-932427837PMC7237495
2
Dunn, J.B., L. Gaines, J. Sullivan, et al., 2012 : Impact of Recycling on Cradle-to-Gate Energy Consumption and Greenhouse Gas Emissions of Automotive Lithium-Ion Batteries, Environmental Science & Technology, 46(22), pp.12704-12710. 10.1021/es302420z23075406
3
Bernardes, A.M., D.C.R. Espinosa, and J.A.S. Tenório, 2004 : Recycling of batteries: a review of current processes and technologies, Journal of Power Sources, 130(1), pp.291-298. 10.1016/j.jpowsour.2003.12.026
4
Choubey, P.K., K.-S. Chung, M.-s. Kim, et al., 2017 : Advance review on the exploitation of the prominent energy- storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs), Minerals Engineering, 110, pp.104-121. 10.1016/j.mineng.2017.04.008
5
Swain, B., 2016 : Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review, Journal of Chemical Technology & Biotechnology, 91(10), pp.2549-2562. 10.1002/jctb.4976
6
Sohn, J.-S. and C.-K. Lee, 2003 : Technology Developments for Recycling of Lithium Battery Wastes, Resources Recycling, 12(1), pp.65-74.
7
Dorella, G. and M.B. Mansur, 2007 : A study of the separation of cobalt from spent Li-ion battery residues, Journal of Power Sources, 170(1), pp.210-215. 10.1016/j.jpowsour.2007.04.025
8
Chen, M., X. Ma, B. Chen, et al., 2019 : Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries, Joule, 3(11), pp.2622-2646. 10.1016/j.joule.2019.09.014
9
Costa, C.M., J.C. Barbosa, R. Gonçalves, et al., 2021 : Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities, Energy Storage Materials, 37, pp.433-465. 10.1016/j.ensm.2021.02.032
10
Shi, J., C. Peng, M. Chen, et al., 2019 : Sulfation Roasting Mechanism for Spent Lithium-Ion Battery Metal Oxides Under SO2-O2-Ar Atmosphere, JOM, 71(12), pp.4473-4482. 10.1007/s11837-019-03800-5
11
Liu, P., L. Xiao, Y. Tang, et al., 2019 : Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials, Journal of Thermal Analysis and Calorimetry, 136(3), pp.1323-1332. 10.1007/s10973-018-7732-7
12
Winslow, K.M., S.J. Laux, and T.G. Townsend, 2018 : A review on the growing concern and potential management strategies of waste lithium-ion batteries, Resources, Conservation and Recycling, 129, pp.263-277. 10.1016/j.resconrec.2017.11.001
13
Zheng, X., Z. Zhu, X. Lin, et al., 2018 : A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries, Engineering, 4(3), pp.361-370. 10.1016/j.eng.2018.05.018
14
Makuza, B., Q. Tian, X. Guo, et al., 2021 : Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review, Journal of Power Sources, 491, pp.229622. 10.1016/j.jpowsour.2021.229622
15
Han, C.W., S.H. Son, M.-S. Lee, et al., 2019 : Study on the Pyro-metallurgical Process for Recovery of Valuable Metal in the Sludge Originated from PCB Manufacturing Process, Resources Recycling, 28(6), pp.87-95. 10.7844/kirr.2019.28.6.87
16
Friedrich, B. and L. Schwich, 2021 : New Science Based Concepts for Increased Efficiency in Battery Recycling, Metals, 11(4), pp.533. 10.3390/met11040533
17
Arya, A. and A.L. Sharma, 2017 : Polymer electrolytes for lithium ion batteries: a critical study, Ionics, 23(3), pp.497-540. 10.1007/s11581-016-1908-6
18
Reddy, M.V., A. Mauger, C.M. Julien, et al., 2020 : Brief History of Early Lithium-Battery Development, Materials, 13(8), pp.1884. 10.3390/ma1308188432316390PMC7215417
19
Yun, L., D. Linh, L. Shui, et al., 2018 : Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles, Resources, Conservation and Recycling, 136, pp.198-208. 10.1016/j.resconrec.2018.04.025
20
Lv, W., Z. Wang, H. Cao, et al., 2018 : A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries, ACS Sustainable Chemistry & Engineering, 6(2), pp.1504-1521. 10.1021/acssuschemeng.7b03811
21
Mohanty, A., S. Sahu, L.B. Sukla, et al., 2021 : Application of various processes to recycle lithium-ion batteries (LIBs): A brief review, Materials Today: Proceedings. 10.1016/j.matpr.2021.03.645
22
Assefi, M., S. Maroufi, Y. Yamauchi, et al., 2020 : Pyrometallurgical recycling of Li-ion, Ni-Cd and Ni-MH batteries: A minireview, Current Opinion in Green and Sustainable Chemistry, 24, pp.26-31. 10.1016/j.cogsc.2020.01.005
23
Hu, J., J. Zhang, H. Li, et al., 2017 : A promising approach for the recovery of high value-added metals from spent lithium-ion batteries, Journal of Power Sources, 351, pp.192-199. 10.1016/j.jpowsour.2017.03.093
24
Li, J., P. Shi, Z. Wang, et al., 2009 : A combined recovery process of metals in spent lithium-ion batteries, Chemosphere, 77(8), pp.1132-1136. 10.1016/j.chemosphere.2009.08.04019775724
25
Shin, S.M., N.H. Kim, J.S. Sohn, et al., 2005 : Development of a metal recovery process from Li-ion battery wastes, Hydrometallurgy, 79(3), pp.172-181. 10.1016/j.hydromet.2005.06.004
26
Lain, M.J., 2001 : Recycling of lithium ion cells and batteries, Journal of Power Sources, 97-98, pp.736-738. 10.1016/S0378-7753(01)00600-0
27
Lee, C.K. and K.-I. Rhee, 2002 : Preparation of LiCoO2 from spent lithium-ion batteries, Journal of Power Sources, 109(1), pp.17-21. 10.1016/S0378-7753(02)00037-X
28
Lombardo, G., B. Ebin, M.R. St. J. Foreman, et al., 2020 : Incineration of EV Lithium-ion batteries as a pretreatment for recycling - Determination of the potential formation of hazardous by-products and effects on metal compounds, Journal of Hazardous Materials, 393, pp.122372. 10.1016/j.jhazmat.2020.12237232208329
29
Lombardo, G., B. Ebin, M.R. St. J. Foreman, et al., 2019 : Chemical Transformations in Li-Ion Battery Electrode Materials by Carbothermic Reduction, ACS Sustainable Chemistry & Engineering, 7(16), pp.13668-13679. 10.1021/acssuschemeng.8b06540
30
Uwadiale, G.G.O.O., 1992 : Magnetizing Reduction of Iron Ores, Mineral Processing and Extractive Metallurgy Review, 11(1-2), pp.1-19. 10.1080/08827509208914211
31
Mao, J., J. Li, and Z. Xu, 2018 : Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries, Journal of Cleaner Production, 205, pp.923-929. 10.1016/j.jclepro.2018.09.098
32
Kang, Y., 2019 : Desiliconisation and Dephosphorisation Behaviours of Various Oxygen Sources in Hot Metal Pre-Treatment, Metals, 9(2), pp.251. 10.3390/met9020251
33
Jie, Y., S. Yang, Y. Li, et al., 2020 : Oxidizing Roasting Behavior and Leaching Performance for the Recovery of Spent LiFePO4 Batteries, Minerals, 10(11), pp.949. 10.3390/min10110949
34
Georgi-Maschler, T., T., B. Friedrich, R. Weyhe, et al., 2012 : Development of a recycling process for Li-ion batteries, Journal of Power Sources, 207, pp.173-182. 10.1016/j.jpowsour.2012.01.152
35
Li, J., G. Wang, and Z. Xu, 2016 : Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries, Journal of Hazardous Materials, 302, pp.97-104. 10.1016/j.jhazmat.2015.09.05026448495
36
Meshram, P., B.D. Pandey, and T.R. Mankhand, 2015 : Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects, Waste Management, 45, pp.306-313. 10.1016/j.wasman.2015.05.02726087645
37
Hu, X., E. Mousa, and G. Ye, 2021 : Recovery of Co, Ni, Mn, and Li from Li-ion batteries by smelting reduction - Part II: A pilot-scale demonstration, Journal of Power Sources, 483, pp.229089. 10.1016/j.jpowsour.2020.229089
38
Tytgat, J., 2013 : The Recycling Efficiency of Li-ion EV batteries according to the European Commission Regulation, and the relation with the End-of-Life Vehicles Directive recycling rate, World Electric Vehicle Journal, 6(4), pp.1039-1047. 10.3390/wevj6041039
39
Wcisło, Z., A. Michaliszyn, and A. Baka, 2012 : Role of slag in the steel refining process in the ladle, Journal of achievements in materials and manufacturing engineering, 55(2), pp.390-395.
40
Ellingham, H.J., 1944 : Reducibility of oxides and sulphides in metallurgical processes, J. Soc. Chem. Ind, 63(5), pp.125-160. 10.1002/jctb.5000630501
41
Siafakas, D., T. Matsushita, A.E.W. Jarfors, et al., 2018 : Viscosity of SiO2–CaO–Al2O3 Slag with Low Silica - Influence of CaO/Al2O3, SiO2/Al2O3 Ratio, ISIJ International, 58(12), pp.2180-2185. 10.2355/isijinternational.ISIJINT-2018-381
42
Avarmaa, K., L. Klemettinen, H. O’Brien, et al., 2021 : Solubility of Palladium in Alumina-Iron Silicate Melts, JOM, 73(6), pp.1871-1877. 10.1007/s11837-021-04672-4
43
Ren, G.-x., S.-w. Xiao, M.-q. Xie, et al., 2017 : Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO–SiO2–Al2O3 slag system, Transactions of Nonferrous Metals Society of China, 27(2), pp.450-456. 10.1016/S1003-6326(17)60051-7
44
Baojun, Z., H. Peter, and J. Eugene, 2013 : Effects of CaO, Al2O3 and MgO on liquidus temperatures of copper smelting and converting slags under controlled oxygen partial pressures, Journal of Mining and Metallurgy, Section B: Metallurgy, 49(2). 10.2298/JMMB120812009Z
45
Dang, H., N. Li, Z. Chang, et al., 2020 : Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery, Separation and Purification Technology, 233, pp.116025. 10.1016/j.seppur.2019.116025
46
Guoxing, R., et al. Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO-SiO2-Al2O3 Slag System. in Advances in Molten Slags, Fluxes, and Salts : Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. 2016. Cham : Springer International Publishing. 10.1007/978-3-319-48769-4_22
47
Barbosa, L.I., G. Valente, R.P. Orosco, et al., 2014 : Lithium extraction from β-spodumene through chlorination with chlorine gas, Minerals Engineering, 56, pp.29-34. 10.1016/j.mineng.2013.10.026
48
Jena, P.K. and E.A. Brocchi, 1997 : Metal Extraction Through Chlorine Metallurgy, Mineral Processing and Extractive Metallurgy Review, 16(4), pp.211-237. 10.1080/08827509708914136
49
Barbosa, L.I., J.A. González, and M.d.C. Ruiz, 2015 : Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride, Thermochimica Acta, 605, pp.63-67. 10.1016/j.tca.2015.02.009
50
Dang, H., B. Wang, Z. Chang, et al., 2018 : Recycled Lithium from Simulated Pyrometallurgical Slag by Chlorination Roasting, ACS Sustainable Chemistry & Engineering, 6(10), pp.13160-13167. 10.1021/acssuschemeng.8b02713
51
Yan, Q.-x., X.-h. Li, Z.-x. Wang, et al., 2012 : Extraction of lithium from lepidolite using chlorination roasting-water leaching process, Transactions of Nonferrous Metals Society of China, 22(7), pp.1753-1759. 10.1016/S1003-6326(11)61383-6
52
Xiao, J., J. Li, and Z. Xu, 2017 : Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy, Journal of Hazardous Materials, 338, pp.124-131. 10.1016/j.jhazmat.2017.05.02428544937
53
Xiao, J., J. Li, and Z. Xu, 2017 : Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy, Environmental Science & Technology, 51(20), pp.11960-11966. 10.1021/acs.est.7b0256128915021
54
Xiao, S., G. Ren, M. Xie, et al., 2017 : Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO–SiO2–Al2O3 Slag System, Journal of Sustainable Metallurgy, 3(4), pp.703-710. 10.1007/s40831-017-0131-7
55
Maroufi, S., M. Assefi, R. Khayyam Nekouei, et al., 2020 : Recovery of lithium and cobalt from waste lithium-ion batteries through a selective isolation-suspension approach, Sustainable Materials and Technologies, 23, pp.e00139. 10.1016/j.susmat.2019.e00139
56
Wang, W., Y. Han, T. Zhang, et al., 2019 : Alkali Metal Salt Catalyzed Carbothermic Reduction for Sustainable Recovery of LiCoO2 : Accurately Controlled Reduction and Efficient Water Leaching, ACS Sustainable Chemistry & Engineering, 7(19), pp.16729-16737. 10.1021/acssuschemeng.9b04175
57
Wang, W., Y. Zhang, X. Liu, et al., 2019 : A Simplified Process for Recovery of Li and Co from Spent LiCoO2 Cathode Using Al Foil As the in Situ Reductant, ACS Sustainable Chemistry & Engineering, 7(14), pp.12222-12230. 10.1021/acssuschemeng.9b01564
58
Wang, D., X. Zhang, H. Chen, et al., 2018 : Separation of Li and Co from the active mass of spent Li-ion batteries by selective sulfating roasting with sodium bisulfate and water leaching, Minerals Engineering, 126, pp.28-35. 10.1016/j.mineng.2018.06.023
59
Peng, C., F. Liu, Z. Wang, et al., 2019 : Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system, Journal of Power Sources, 415, pp.179-188. 10.1016/j.jpowsour.2019.01.072
60
Fan, E., L. Li, J. Lin, et al., 2019 : Low-Temperature Molten-Salt-Assisted Recovery of Valuable Metals from Spent Lithium-Ion Batteries, ACS Sustainable Chemistry & Engineering, 7(19), pp.16144-16150. 10.1021/acssuschemeng.9b03054
Information
  • Publisher :The Korean Institute of Resources Recycling
  • Publisher(Ko) :한국자원리싸이클링학회
  • Journal Title :Resources Recycling
  • Journal Title(Ko) :자원리싸이클링
  • Volume : 31
  • No :3
  • Pages :27-39
  • Received Date : 2022-06-02
  • Revised Date : 2022-06-14
  • Accepted Date : 2022-06-14