All Issue

2021 Vol.30, Issue 2 Preview Page

Research Paper

April 2021. pp. 31-38
Abstract
References
1
Evans, K., 2016 : The History, Challenges, and New Developments in the Management and Use of Bauxite Residue, J. Sustain. Metall., 2, pp.316-331. 10.1007/s40831-016-0060-x
2
Samal, S., Ray, A. K. and Bandopadhyay, A., 2013 : Proposal for resources, utilization and processes of red mud in India - A review, Int. J. Miner. Process., 118, pp. 43-55. 10.1016/j.minpro.2012.11.001
3
Hua, Y., Heal, K. V. and Friesl-Hanl, W., 2017 : The use of red mud as an immobilizer for metal/metalloid-contaminated soil: A review, J. Hazard. Mater., 325, pp.17-30. 10.1016/j.jhazmat.2016.11.07327914288
4
Menzies, N. W., Fulton, I. M. and Morrell, W. J., 2004 : Seawater Neutralization of Alkaline Bauxite Residue and Implication for Revegetation, J. Environ. Qual., 33(5), pp. 1877-1884.
5
Hanahan, C., McConchie, D., Pohl, J., et al., 2004 : Chemistry of Seawater Neutralization of Bauxite Refinery Residues (Red Mud), Environ. Eng. Sci., 21(2), pp.125-138. 10.1089/109287504773087309
6
Gräfe. M., Power, G. and Klauber. C., 2011 : Bauxite residue issues: III. Alkalinity and associated chemistry, Hydrometallurgy, 108(1-2), pp.60-79. 10.1016/j.hydromet.2011.02.004
7
Narayanan, R. P. N., Kazantzis, N. K. and Emmert, M. H., 2018 : Selective Process Steps for the Recovery of Scandium from Jamaican Bauxite Residue (Red Mud), ACS Sustain. Chem. Eng., 6(1), pp.1478-1488. 10.1021/acssuschemeng.7b03968
8
A.C. Ni'am, Y.F. Wang, S.W. Chen, et al., 2020 : Simultaneous recovery of rare earth elements from waste permanent magnets (WPMs) leach liquor by solvent extraction and hollow fiber supported liquid membrane, Chem. Eng. Process, 148(107831), pp.1-10.
9
Kołodyńska, D. and Hubicki D. F. Z., 2020 : Evaluation of possible use of the macroporous ion exchanger in the adsorption process of rare earth elements and heavy metal ions from spent batteries solutions, Chem. Eng. Process, 147(107767), pp.1-14. 10.1016/j.cep.2019.107767
10
Provali, A., Agarwal, V. and Lundström, M., 2020 : REE(III) recovery from spent NiMH batteries as REE double sulfates and their simultaneous hydrolysis and wet-oxidation, J. Waste. Manag., 107, pp.66-73. 10.1016/j.wasman.2020.03.04232278217
11
Okamura, H. Mizuno, M., Hirayama, N., et al., 2020 : Synergistic Enhancement of the Extraction and Separation Efficiencies of Lanthanoid(III) Ions by the Formation of Charged Adducts in an Ionic Liquid, Ind. Eng. Chem. Res., 59(1), pp.329-340. 10.1021/acs.iecr.9b04998
12
Zhu, Z., Pranolo, Y. and Cheng, C. Y., 2015 : Separation of uranium and thorium from rare earths for rare earth production - A review, Miner. Eng., 77, pp.185-196. 10.1016/j.mineng.2015.03.012
13
Su, J., Gul, X., Gao, Y., et al., 2020 : Recovery of thorium and rare earths from leachate of ion-absorbed rare earth ores radioactive ores residues with N1923 and Cyanex® 572, J. Rare Earths, pp.1-9. 10.1016/j.jre.2020.09.005
14
Qi, D., 2018 : Hydrometallurgy of Rare Earths, pp.671-741, 1st Edition, Elsevier, Amsterdam. 10.1016/B978-0-12-813920-2.00007-6
15
Kul, M., Topkaya, Y. and Karakaya, İ., 2008 : Rare earth double sulfates from pre-concentrated bastnasite, Hydrometallurgy, 93, pp.129-135. 10.1016/j.hydromet.2007.11.008
16
Lyman, J. W. and Palmer, G. R., 1993 : Recycling of Rare Earths and Iron from NdFeB Magnet Scrap, High Temp. Mat. Process, 11(1-4), pp. 175-187. 10.1515/HTMP.1993.11.1-4.175
17
Porvali, A., Wilson, B. P. and Lundström, M., 2017 : Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate, Waste. Manage., 71, pp.381-389.
18
Porvali, A., Agarwal, V. and Lundström, M., 2019 : Circulation of Sodium Sulfate Solution Produced During NiMH battery Waste Processing, Mining. Metall. Explor., 36, pp.979-991. 10.1007/s42461-019-0086-2
19
Das, G., Lencka, M.M., Eslamimanesh, A., et al., 2019 : Rare earth sulfates in aqueous systems: Thermodynamic modeling of binary and multicomponent systems over wide concentration and temperature renges, J. Chem. Thermodyn., 131, pp.49-79. 10.1016/j.jct.2018.10.020
20
Silva, R. G., Morais, C. A. and Oliveira, É. D., 2019 : Selective precipitation of rare earth from non-purified and purified sulfate liquors using sodium sulfate and disodium hydrogen phosphate, Miner. Eng., 134, pp.402-416. 10.1016/j.mineng.2019.02.028
21
Senanayake, G., Jayasekera S, Bandara A.M.T.S., et al., 2016 : Rare earth metal ion solubility in sulphate-phosphate solutions of pH range-0.5 to 5.0 relevant to processing fluorapatite rich concentrates: Effect of calcium, aluminium, iron and sodium ions and temperature up to 80°C, Miner. Eng., 98, pp.169-176. 10.1016/j.mineng.2016.07.022
22
Smith, R.M., Martell, A.E., Motekaitis, R.J., 2004 : NIST standard reference database 46. NIST Critical Selected Stability Constants of Metal Complexes Database: Version 8.0.
23
Wood, S. A., 1990 : The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure, Chem. Geol., 88(1-2), pp.99-125. 10.1016/0009-2541(90)90106-H
24
Spedding, F. H. and Jaffe, S., 1954 : Conductances, Solubilities and Ionization Constants of Some Rare Earth Sulfates in Aqueous Silutions at 25°, J. Am. Chem. Soc., 76(3), pp.882-884.
25
Turner, D. R., Whitfield, M. and Dickson, A. G., 1981 : The equilibrium speciation of dissolved components in freshwater and sea water at 25°C and 1 atm pressure, Geochim. Cosmochim. Acta, 45(6), pp.855-881. 10.1016/0016-7037(81)90115-0
26
Chen, S., Zhao, L., Wang, M., et al., 2020 : Effects of iron and temperature on solubility of light rare earth sulfates in multicomponent system of Fe2(SO4)3-H3PO4-H2SO4 synthetic solution, J. Rare Earth., 38(11), pp. 1243-1250. 10.1016/j.jre.2019.11.014
Information
  • Publisher :The Korean Institute of Resources Recycling
  • Publisher(Ko) :한국자원리싸이클링학회
  • Journal Title :Resources Recycling
  • Journal Title(Ko) :자원리싸이클링
  • Volume : 30
  • No :2
  • Pages :31-38
  • Received Date :2021. 02. 03
  • Revised Date :2021. 02. 18
  • Accepted Date : 2021. 02. 25