All Issue

2022 Vol.31, Issue 2 Preview Page
30 April 2022. pp. 20-32
Abstract
References
1
Park, W. S., 2020 : Energy storage technology using Vanadium redox flow battery (VRFB), KEPRI NEWS, 292, pp.12-15.
2
Kim, H. T., 2017 : Trends of Membranes for Vanadium Redox Flow Batteries, KIC News, 20(3), pp.28-35.
3
Skyllas-Kazacos, M., Cao, L., Kazacos, M., et al., 2016 : Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review, ChemSusChem, 9, pp.1521-1543. 10.1002/cssc.20160010227295523
4
Choi, C., Kim, S., Kim, R., et al., 2017 : A review of vanadium electrolytes for vanadium redox flow batteries, Renewable and Sustainable Energy Reviews, 69, pp.263-274. 10.1016/j.rser.2016.11.188
5
Mongird, K., Fotedar, V., Viswanathan, V., et al., 2019 : Energy Storage Technology and Cost Characterization Report, U.S. Department of Energy. 10.2172/1573487
6
Heo, J., Han, J., Kim, S., et al., 2019 : Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries, Nature Communications, 10, pp.4412. 10.1038/s41467-019-12363-731562304PMC6764956
7
Noack, J., Wietschel, L., Roznyatovskaya, N., et al., 2016 : Technoeconomic modeling and analysis of redox flow battery systems, Energies, 9, pp.627. 10.3390/en9080627
8
Dassisti, M., Cozzolino, G., Chimienti, M., et al., 2016 : Sustainability of vanadium redox-flow batteries: Benchmarking electrolyte synthesis procedures, International Journal of Hydrogen Energy, 41, pp.16477-16488. 10.1016/j.ijhydene.2016.05.197
9
Zhu, Q., Fan, C., Mu, W., et al., 2019 : System and method for purifying vanadium pentoxide, CA2973511C.
10
Park, W. J., 2019 : Survey on actual conditions of ceramic raw materials and establishment of policies for fostering industries, Chemical Market Research Inc.(CMRI), chapter 3, section 18, pp.255.
11
Vitolo, S., Seggiani, M., Filippi, S., et al., 2000 : Recovery of vanadium from heavy oil and Orimulsion fly ashes, Hydrometallurgy, 57, pp.141-149. 10.1016/S0304-386X(00)00099-2
12
He, D., Feng, Q., Zhang, G., et al., 2007 : An environmentally-friendly technology of vanadium extraction from stone coal, Minerals Engineering, 20, pp.1184-1186. 10.1016/j.mineng.2007.04.017
13
Nguyen, T.H., Lee, M.S., 2013 : Separation of molybdenum and vanadium from acid solutions by ion exchange, Hydrometallurgy, 136, pp.65-70. 10.1016/j.hydromet.2013.03.007
14
Nguyen, T.H., Lee, M.S., 2014 : Recovery of molybdenum and vanadium with high purity from sulfuric acid leach solution of spent hydrodesulfurization catalysts by ion exchange, Hydrometallurgy, 147-148, pp.142-147. 10.1016/j.hydromet.2014.05.010
15
Barik, S.P., Park, K.H., Nam, C.W., 2014 : Process development for recovery of vanadium and nickel from an industrial solid waste by a leaching-solvent extraction technique, Journal of Environmental Management, 146, pp.22-28. 10.1016/j.jenvman.2014.06.03225156262
16
Noori, M., Rashchi, F., Babakhani, A., et al., 2014 : Selective recovery and separation of nickel and vanadium in sulfate media using mixtures of D2EHPA and Cyanex 272, Separation and Purification Technology, 136, pp.265-273. 10.1016/j.seppur.2014.08.038
17
Jiang, D., Zhang, H., Xu, H., et al., 2017 : Chlorination and purification of vanadium pentoxide with anhydrous aluminum chloride, Journal of Alloys and Compounds, 709, 505-510. 10.1016/j.jallcom.2017.03.123
18
Fan, C., Xu, J., Yang, H., et al., 2020 : High-purity, low-Cl V2O5 via the gaseous hydrolysis of VOCl3 in a fluidized bed, Particuology, 49, pp.9-15. 10.1016/j.partic.2018.12.005
19
Podval’naya, N.V., Volkov, V.L., 2006 : Composition and formation kinetics of sodium polyvanadates in vanadium (IV, V) solutions. Russian Journal of Inorganic Chemistry, 51(3), pp.404-408. 10.1134/S0036023606030041
20
Zhang, Y. M., Bao, S. X., Liu, T., et al., 2011 : The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109, pp.116-124. 10.1016/j.hydromet.2011.06.002
21
Cui, X., Zhang, G., Chen, X., et al., 2019 : Purification of V2O5 and its application in all-vanadium redox flow batteries, Materials Research Express, 6, 085552. 10.1088/2053-1591/ab27e4
22
Wang, M., Woo, K. D., Kim, I.Y., et al., 2007 : Separation of Fe3+ during hydrolysis of TiO2+ by addition of EDTA, Hydrometallurgy, 89, pp.319-322. 10.1016/j.hydromet.2007.08.012
23
Xiong, X., Wang, Z., Wu, F., et al., 2013 : Preparation of TiO2 from ilmenite using sulfuric acid decomposition of the titania residue combined with separation of Fe3+ with EDTA during hydrolysis, Advanced Powder Technology, 24, pp.60-67 10.1016/j.apt.2012.02.002
24
Zhang, Y., Dreisinger, D., Zhang, T. A., et al., 2019 : Preparation of highly pure vanadyl sulfate electrolyte from vanadium slag leach solution with the complexing effect of EDTA on Fe(III), Hydrometallurgy, 188, pp.54-63. 10.1016/j.hydromet.2019.05.012
25
Park, I.-S., Kwon, S., Hong, H. J., et al., 2020 : Method for manufacturing vanadium electrolyte, The vanadium electrolyte manufactured by the same and cell using the same, 10-2235379.
26
Kim, S. K., Kwon, S., Hong, H. J., et al., 2021 : Study on the Manufacture of High-purity Vanadium Pentoxide and Electrolyte for a Vanadium Redox Flow Batter, Journal of The Korean Society of Mineral and Energy Resources Engineers (KSMER), 58(1), pp.44-53. 10.32390/ksmer.2021.58.1.044
27
Yoon, H. S., Heo, S. J., Kim, C. J., et al., 2020 : Precipitation Characteristics of Ammonium Metavanadate from Sodium Vanadate Solution by Addition of Ammonium Chloride, J. of Korean Inst. of Resources Recycling, 29(5), pp.28-37. 10.7844/kirr.2020.29.5.28
28
Yoon, H. S., Chae, S., Kim, C. J., et al., 2019 : Precipitation Behavior of Ammonium Vanadate from Solution Containing Vanadium, J. of Korean Inst. of Resources Recycling, 28(5), pp.42-50. 10.7844/kirr.2020.29.5.28
29
Hart, J. R., Ethylenediaminetetraacetic Acid and Related Chelating Agents, Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH
30
Willett, A. I., Rittmann, B.E., 2003 : Slow complexation kinetics for ferric iron and EDTA complexes make EDTA non-biodegradable, Biodegradation, 14, pp.105-121 10.1023/A:102407432995512877466
31
Zhang, Y., Zheng, J., Zhao, Y., et al., 2016 : Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor, Applied Surface Science, 377, pp.385-393. 10.1016/j.apsusc.2016.03.180
32
Prze’sniak-Welenc, M., Nadolska, M., Ko’scielska, M., et al., 2019 : Tailoring the Size and Shape-New Path for Ammonium Metavanadate Synthesis, Materials, 12, pp.3446. 10.3390/ma1220344631640275PMC6829540
33
Nourizadeh, H., Noori, M., Mirazimi, M., et al., 2021 : Characterization and Ethanol‑Sensing Behavior of Nanostructured Vanadium Pentoxide Recovered from Oil Fly Ash, International Journal of Environmental Research, 15, pp.985-999. 10.1007/s41742-021-00361-x
34
Roznyatovskaya, N., Herr, T., Küttinger, M., et al., 2016 : Detection of capacity imbalance in vanadium electrolyte and its electrochemical regeneration for all-vanadium redox-flow batteries, Journal of Power Sources, 302, pp.79-83. 10.1016/j.jpowsour.2015.10.021
Information
  • Publisher :The Korean Institute of Resources Recycling
  • Publisher(Ko) :한국자원리싸이클링학회
  • Journal Title :Resources Recycling
  • Journal Title(Ko) :자원리싸이클링
  • Volume : 31
  • No :2
  • Pages :20-32
  • Received Date : 2022-01-25
  • Revised Date : 2022-02-18
  • Accepted Date : 2022-02-21