All Issue

2021 Vol.30, Issue 1

Article Review

28 February 2021. pp. 3-13
Abstract
References
1

K. W. Lange, 1988 : Thermodynamic and kinetic aspects of secondary steelmaking processes, Int. Mater. Reviews, 33(1), pp.53-89.

10.1179/imr.1988.33.1.53
2

J. H. Park and Y. Kang, 2017 : Inclusions in Stainless Steels - A Review, Steel Res. Int., 88, 1700130.

10.1002/srin.201700130
3

J. H. Park and H. Todoroki, 2010 : Control of MgO∙Al2O3 Spinel Inclusions in Stainless Steels, ISIJ Int., 50(10), pp.1333-1346.

10.2355/isijinternational.50.1333
4

A. Harada, G. Miyano, N. Maruoka, et al., 2014 : Dissolution Behavior of Mg from MgO into Molten Steel Deoxidized by Al, ISIJ Int., 54(10), pp.2230-2238.

10.2355/isijinternational.54.2230
5

C. Liu, F. Huang and X. Wang, 2016 : The Effect of Refining Slag and Refractory on Inclusion Transformation in Extra Low Oxygen Steels, Metall. Mater. Trans. B, 47(2), pp.999-1009.

10.1007/s11663-016-0592-2
6

T. Nishi and K. Shinme, 1998 : Formation of Spinel Inclusions in Molten Stainless Steel under Al Deoxidation with Slags, Tetsu-to-Hagané, 84(12), pp.837-843.

10.2355/tetsutohagane1955.84.12_837
7

J. H. Park and Y. -B. Kang, 2006 : Effect of Ferrosilicon Addition on the Composition of Inclusions in 16Cr-14Ni-Si Stainless Steel Melts, Metall. Trans. B, 37(5), pp.791-797.

10.1007/s11663-006-0061-4
8

J. R. Kim, Y. S. Lee, D. J. Min, et al., 2004 : Influence of MgO and Al2O3 Contents on Viscosity of Blast Furnace Type Slags Containing FeO, ISIJ Int., 44(8), pp.1291-1297.

10.2355/isijinternational.44.1291
9

Z. Zhang, G. Wen, P. Tang, et al., 2008 : The Influence of Al2O3/SiO2 Ratio on the Viscosity of Mold Fluxes, ISIJ Int., 48(6), pp.739-746.

10.2355/isijinternational.48.739
10

Wranglén, 1974 : Pitting and Sulphide Inclusions in Steel, Corrosion Science, 14(5), pp.331-349.

10.1016/S0010-938X(74)80047-8
11

E. G. Webb, T. Suter and R. C. Alkire, 2001 : Microelectrochemical Measurements of the Dissolution of Single MnS Inclusions, and the Prediction of the Critical Conditions for Pit Initiation on Stainless Steel, Jour. of the Electrochemical Society, 148(5), pp.B186-B195.

10.1149/1.1360205
12

J. Guo, S. Cheng, Z. Cheng, et al., 2013 : Thermodynamics for Precipitation of CaS Bearing Inclusion and Their Deformation During Rolling Process for Al-Killed Ca-Treated Steel, Steel Res. Int., 84(6), pp.545-553.

10.1002/srin.201200253
13

X. Wang, 2017 : Ladle Furnace Temperature Prediction Model Based on Large-scale Data With Random Forest, IEEE/CAA Jour. of Automatica Sinica, 4(4), pp.770-774.

10.1109/JAS.2016.7510247
14

D. G. C. Robertson, B. Deo and S. Ohguchi, 1984 : Multicomponent Mixed-Transport -Control Theory for Kinetics of Coupled Slag/Metal and Slag/Metal/Gas Reactions: Application to desulphurization of molten iron, Ironmaking and Steelmaking, 11(1), pp.44-55.

15

S. Ohguchi, D. G. C. Robertson, B. Deo, et al., 1984 : Simultaneous dephosphorization and desulphurization of molten pig iron, Ironmaking and Steelmaking, 11(4), pp.202-213.

16

X. Zhang, B. Xie, H. Y. Li, et al., 2013 : Coupled reaction kinetics of duplex steelmaking process for high phosphorus hot metal, 40(4), pp.282-289.

10.1179/1743281212Y.0000000036
17

P. Wei, M. Ohya, M. Hirasawa, et al., 1990 : Interfacial Oxygen Potential in Phosphorus Reaction between Iron Oxide Containing Slag and Molten Iron of High Carbon Concentration, Tetsu-to-Hagané, 76(9), pp.1488-1495.

10.2355/tetsutohagane1955.76.9_1488
18

D. J. Kim and J. H. Park, 2012 : Interfacial Reaction Between CaO-SiO2-MgO-Al2O3 Flux and Fe-xMn-yAl (x=10 and 20 mass pct, y=1,3, and 6 mass pct) Steel at 1873 K (1600℃), Metall. Mater. Trans. B, 43(4), pp.875-886.

10.1007/s11663-012-9667-x
19

A. N. Conejo, F. R. Lara, M. Macias-Hernández, et al., 2007 : Kinetic Model of Steel Refining in a Ladle Furnace, Steel Res. Int., 78(2), pp.141-150.

10.1002/srin.200705871
20

Y. N. Jia, L. G. Zhu, C. J. Zhang, et al., 2016 : Mass transfer behaviour of Mg in low carbon aluminium killed steel during LF refining, Ironmaking and Steelmaking, 44(10), pp.796-802.

10.1080/03019233.2016.1240848
21

Y. Liu, M. -F. Jiang, L. -X. Xu, et al., 2012 : Mathematical Modeling of Refining of Stainless Steel in Smelting Reduction Converter Using Chromium Ore, ISIJ Int., 52(3), pp.394-401.

10.2355/isijinternational.52.394
22

S. -J. Kim, 2019 : Past and present of secondary refining model for inclusion composition control, Kinzoku, 89(9), pp.53-59. (Japanese)

23

K. J. Graham and G. A. Iron, 2008 : Coupled Kinetic Phenomena in Ladle Metallurgy, In Proc. of the 3rd international conference on process development in iron and steelmaking, pp.385-396, SCANMET III, MEFOS, Lulea, Sweden.

24

K. J. Graham, 2008 : Integrated Ladle Metallurgy Control, Thesis, McMaster University, Canada.

25

K. J. Graham and G. A. Iron, 2009 : Toward Integrated Ladle Metallurgy Control, Iron and Steel Tech., 6(1), pp.164-173.

26

J. Lehmann, 2016 : Applications of Arcelormittal Thermodynamic Computation Tools to Steel Production, Advances in Molten Slags, Fluxes, and Salts: Proc. of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, pp.697-706, Springer, Cham.

10.1007/978-3-319-48769-4_7427003155
27

A. Harada, N. Maruoka, H. Shibata, et al., 2013 : A Kinetic Model to Predict the Compositions of Metal, Slag and Inclusions during Ladle Refining: Part 1. Basic Concept and Application, ISIJ Int., 53(12), pp.2110-2117.

10.2355/isijinternational.53.2110
28

A. Harada, N. Maruoka, H. Shibata, et al., 2013 : A Kinetic Model to Predict the Compositions of Metal, Slag and Inclusions during Ladle Refining: Part 2. Condition to Control the Inclusion Composition, ISIJ Int., 53(12), pp.2118-2125.

10.2355/isijinternational.53.2118
29

S. -J. Kim, A. Harada and S. Kitamura, 2011 : Condition to suppress spinel formation in ladle treatment predicted by the kinetics simulation model, Proc. of AISTech 2015, 3261, Cleveland, Ohio, USA.

30

M. Hino and K. Ito, 2010 : Thermodynamic data for steelmaking, pp.10, Tohoku University Press, Sendai, Japan.

31

FactSage 7.1, Thermfact/CRCR and GTT-Technologies, 1976-2020.

32

J. -I. Kim, S. -J. Kim and S. Kitamura, 2018 : Effect of inclusions behaviors on the formation of Al2O3 and Spinel inclusions in ladle treatment by simulation model, Proc.of ICS2018, CD-ROM, Venice, Italy.

33

J. -I. Kim and S. -J. Kim, 2018 : Evolution of inclusions during ladle treatment via simulation model with introduction of changes of Mg content in Mg-Al spinel inclusion, Abst. of 176th ISIJ 2018 meeting, Sendai, Japan.

34

J. -I. Kim and S. -J. Kim, 2019 : Composition changes in inclusions from Al2O3 to MgO via spinel formation during ladle treatment by simulation model, Abst. of 177th ISIJ 2019 meeting, Tokyo, Japan.

35

J. -I. Kim and S. -J. Kim, 2020 : Evolution of Mg-Al-based Inclusions with Changes in Mg Content during Ladle Treatment Based on a Coupled Reaction Model, ISIJ Int., 60(4), pp.691-698.

10.2355/isijinternational.ISIJINT-2019-488
36

J. -I. Kim and S. -J. Kim, 2020 : Influence of Cr Content in Steel on the Behavior of MgO·Al2O3 Spinel Inclusions During Ladle Treatment by Using Kinetic Reaction Model, Trans. Indian Inst. Met., Online-publised, Springer Link.

37

C. Liu, M. Yagi, X. Gao, et al., 2018 : Kinetics of Transformation of Al2O3 to MgO∙Al2O3 Spinel Inclusions in Mg-Containing Steel, Metall. Mater. Trans. B, 49(1), pp.113-122.

10.1007/s11663-017-1122-6
38

Q. Shu, O. Volkova, S. Lachmann, et al., 2011 : Modification of Inclusion Composition in Steel During Secondary Metallurgical Ladle Treatment - A Comprehensive Process Simulation Model, Proc of AISTech 2011, pp.537-547, Indianapolis, Ind., USA.

Information
  • Publisher :The Korean Institute of Resources Recycling
  • Publisher(Ko) :한국자원리싸이클링학회
  • Journal Title :Resources Recycling
  • Journal Title(Ko) :자원리싸이클링
  • Volume : 30
  • No :1
  • Pages :3-13
  • Received Date : 2020-08-19
  • Revised Date : 2020-12-15
  • Accepted Date : 2020-12-23