All Issue

2023 Vol.32, Issue 6 Preview Page

Research Paper

31 December 2023. pp. 45-53
Abstract
References
1
Lee, S-H., Bae, S., 2022 : A strategy for ammonia odor monitoring, prediction, and reduction from livestock manure wastes in Korea, Geosystem Engineering, 25(1-2), pp.35-43. 10.1080/12269328.2022.2120094
2
KEI (Korea Environmental Institute), 2017 : Management Strategies to Reduce PM-2.5 Emission: Emphasis-Ammonia, KEI Fundamental Research Report (Korean), pp.1-89.
3
Jafari, M. J., Matin, A. H., Rahmati, A., et al., 2018 : Experimental optimization of a spray tower for ammonia removal. Atmospheric Pollution Research, 9, pp.783-790. 10.1016/j.apr.2018.01.014
4
Takahashi, A., Minami, K., Noda, K., et al., 2020 : Trace Ammonia Removal from Air by Selective Adsorbents Reusable with Water, ACS Appl. Mater. Interfaces, 12(13), pp.15115-15119. 10.1021/acsami.9b2238432124600
5
DeCoste, J. B., Denny, M. S., Peterson, G. W., et al., 2016 : Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption, Chem. Sci., 7(4), pp.2711-2716. 10.1039/C5SC04368A28660045PMC5477018
6
Han, B., Butterly, C., Zhang, W., et al., 2021 : Adsorbent materials for ammonium and ammonia removal: A review, J. Clean. Prod., 283, 124611. 10.1016/j.jclepro.2020.124611
7
Khabzina, Y., Farrusseng, D., 2018 : Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions, Microporous Mesoporous Mater, 265, pp.143-148. 10.1016/j.micromeso.2018.02.011
8
Hao, J. N., Yan, B., 2016 : Simultaneous determination of indoor ammonia pollution and its biological metabolite in the human body with a recyclable nanocrystalline lanthanide functionalized MOF, Nanoscale, 8(5), pp.2881-2886. 10.1039/C5NR06066D26762851
9
Maia, G. D. N., Day, G. B., Gates, R. S., et al., 2012 : Ammonia biofiltration and nitrous oxide generation during the start-up of gas-phase compost biofilters, Atmos. Environ., 46, pp.659-664. 10.1016/j.atmosenv.2011.10.019
10
Chen, D. L., Sun, J. L., Bai, M., et al., 2015 : A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: Application of lignite, Sci. Rep., 5(1), 16689. 10.1038/srep1668926584639PMC4653648
11
Dong, Y., Yuan, H., Zhang, R., et al., 2019 : Removal of ammonia nitrogen from wastewater: A review, Trans. ASABE, 62(6), pp.1767-1778. 10.13031/trans.13671
12
Gupta, V. K., Sadegh, H., Yari, M., et al., 2015 : Removal of ammonium ions from wastewater a short review in development of efficient methods, Glob. J. Environ. Sci. Manag., 1(2), pp.149-158.
13
Kinidi, L., Tan, I. A. W., Wahab, N. B. A., et al., 2018 : Recent development in ammonia stripping process for industrial wastewater treatment, Int. J. Chem. Eng., pp.14. 10.1155/2018/3181087
14
Ma, Z., Jia, Q., Tao, C., et al., 2020 : Highlighting unique function of immobilized superoxide on TiO2 for selective photocatalytic degradation, Sep. Purif. Technol., 238, 116402. 10.1016/j.seppur.2019.116402
15
Rada-Ariza, A. M., Lopez-Vazquez, C. M., van der Steen, N. P., et al., 2017 : Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors, Bioresour. Technol., 245, pp.81-89. 10.1016/j.biortech.2017.08.01928892709
16
Tao, C., Jia, Q. P., Han, B., et al., 2020 : Tunable selectivity of radical generation over TiO2 for photocatalysis, Chem. Eng. Sci. 214, p.7. 10.1016/j.ces.2019.115438
17
Ye, Y. Y., Ngo, H. H., Guo, W. S., et al., 2018 : A critical review on ammonium recovery from wastewater for sustainable wastewater management, Bioresour. Technol., 268, pp.749-758. 10.1016/j.biortech.2018.07.11130076073
18
Zhang, J., Zheng, L., Ma, Y., et al., 2022 : A mini-review on NH3 separation technologies: recent advances and future directions, Energy Fuels, 36(24), pp.14516-14533. 10.1021/acs.energyfuels.2c02511
19
Pandey, B. and Chen, L., 2021 : Technologies to recover nitrogen from livestock manure - A review, Sci. Total Environ., 784, 147098. 10.1016/j.scitotenv.2021.14709833901956
20
Kim, S.-D., Kwak, J.-H., Min, K.-M., et al., 2017 : System development of ammonia deaeration and adsorption/desorption, Final report of Project(2014000150007), Korea Environmental Industry & Technology Instituter, Seoul, Korea.
21
Lee, M.-K., Kim, D., Kim, K., et al., 2019 : Policy improvement to reduce odor and environmental pollution in agricultural and livestock industry, KREI basic research report R896 Research document 1, pp.1-177, Korea Rural Economic Institute, Naju, Korea.
22
Kim, K.-Y., Park, J.-B., Kim, C.-N., et al., 2006 : Field study of emission characteristics of ammonia and hydrogen sulfide by pig building types, J. Korean Soc. Occup. Environ. Hyg., 16, pp.36-43.
23
Kim, M-.S., Koo, N., Kim, J.-G., 2020 : A comparative study on ammonia emission inventory in livestock manure compost application through a foreign case study, Korean J. Environ. Biol., 38, pp.71-81. 10.11626/KJEB.2020.38.1.071
24
Cho, S.-B., Hwang, O.-H., Lee, G., et al., 2015 : The study on investigation of factors and reduction for odor generating substrates from hog farm, NIAS Grant(No. PJ008606), National Institute of Animal Science, Wanju, Korea.
25
Han, J., Park, S., Song, J.-H., et al., 2018 : A study to establish the 2nd integrated malodor prevention policy, NIER-SP2018-233, National Institute of Environmental Research, Incheon, Korea.
26
Wang, Y. C., Han, M. F., Jia, T. P., et al., 2021 : Emissions, measurement, and control of odor in livestock farms: A review, Sci. Total Environ., 776, 145735. 10.1016/j.scitotenv.2021.14573533640544
27
Poling, B. E., Prausnitz, J. M., O'Connell, J. P., 2001 : The properties of gases and liquids: McGraw-Hill Education, New York.
28
Cheema, I. I., Krewer, U., 2018 : Operating envelope of Haber-Bosch process design for power-to-ammonia, RSC Adv., 8(61), pp.34926-34936. 10.1039/C8RA06821F35547069PMC9087324
29
Susaya, J., Kim, K., 2010 : Removal of gaseous NH3 by water as a sorptive medium: the role of water volume and absorption time, Fresenius Environ. Bull., 19(4a), pp.745-750.
30
Hanson, D., Kosciuch, E., 2003 : The NH3 mass accommodation coefficient for uptake onto sulfuric acid colutions, J. Phys. Chem. A, 107(13), pp.2199-2208. 10.1021/jp021570j
31
Lee, J. W., Barin, G., Peterson, G. W., et al., 2017 : A microporous amic acid polymer for enhanced ammonia capture, ACS Appl. Mater. Interfaces 9(39), pp.33504-33510. 10.1021/acsami.7b0260328388032
32
Moribe, S., Chen, Z., Alayoglu, S., et al., 2019 : Ammonia capture within isoreticular metal-organic frameworks with rod secondary building units, ACS Mater. Lett., 1(4), pp.476-480. 10.1021/acsmaterialslett.9b00307
33
Nijem, N., Fursich, K., Bluhrn, H., et al., 2015 : Ammonia adsorption and co-adsorption with water in HKUST-1: Spectroscopic evidence for cooperative interactions, J. Phys. Chem. C, 119(44), pp.24781-24788. 10.1021/acs.jpcc.5b05716
34
Bandosz, T. J., 2006 : Activated carbon surfaces in environmental remediation. Elsevier. New York.
35
Mochizuki, T., Kubota, M., Matsuda, H., et al., 2016 : Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation, Fuel Process. Technol, 144, pp.164-169. 10.1016/j.fuproc.2015.12.012
36
Zhang, F., Liang, M., Ye, C., et al., 2020 : Removal of ammonia and hydrogen sulfide from livestock farm by copper modified activated carbon, Global Nest J., 22(2), pp.165-172.
37
Qajar, A., Peer, M., Andalibi, M. R., et al., 2015 : Enhanced ammonia adsorption on functionalized nanoporous carbons, Microporous Mesoporous Mat., 218, pp.15-23. 10.1016/j.micromeso.2015.06.030
38
Matito-Martos, I., Martin-Calvo, A., Ania, C. O., et al., 2020 : Calero, S. Role of hydrogen bonding in the capture and storage of ammonia in zeolites, Chem. Eng. J., 387, 124062. 10.1016/j.cej.2020.124062
39
Lucero, J. M., Crawford, J. M., Wolden, C. A., et al., 2021 : Tunability of ammonia adsorption over NaP zeolite, Microporous Mesoporous Mater, 324, 111288. 10.1016/j.micromeso.2021.111288
40
Seredych, M., Ania, C., Bandosz, T. J., 2016 : Moisture insensitive adsorption of ammonia on resorcinol-formaldehyde resins, J. Hazard. Mater., 305, pp.96-104. 10.1016/j.jhazmat.2015.11.02226651066
41
Helminen, J., Helenius, J., Paatero, E., et al., 2000 : Comparison of Sorbents and Isotherm Models for NH3-Gas Separation by Adsorption, AIChE J., 46(8), pp.1541-1555 10.1002/aic.690460807
42
Cao, Z., Akhtar, F., 2021 : Porous strontium chloride scaffolded by graphene networks as ammonia carriers, Adv. Funct. Mater., 31(30), 2008505. 10.1002/adfm.202008505
43
Tian, X., Qiu, J., Wang, Z., et al., 2022 : A record ammonia adsorption by calcium chloride confined in covalent organic frameworks, ChemComm, 58(8), pp.1151-1154. 10.1039/D1CC06308A34981086
44
Zhao, X., Wang, Y. X., Li, D. S., et al., 2018 : Metal-organic frameworks for separation, Adv. Mater., 30(37), 1705189. 10.1002/adma.20170518929582482
45
Vikrant, K., Kumar, V., Kim, K.H., et al., 2017 : Metal-organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia, J. Mater. Chem. A, 5(44), pp.22877-22896. 10.1039/C7TA07847A
46
Rieth, A. J., Dinca, M., 2018 : Controlled gas uptake in metal-organic frameworks with record ammonia sorption, J. Am. Chem. Soc., 140(9), pp.3461-3466. 10.1021/jacs.8b0031329425040
47
Kim, D.-W., Kang, D.-W., Kang, M., et al., 2020 : High ammonia uptake of a metal-organic framework adsorbent in a wide pressure range, Angew. Chem, Int. Ed., 59(50), pp.22531-22536. 10.1002/anie.20201255232969148
48
Vikrant, K., Kumar, V., Kim, K. H., et al., 2017 : Metal-organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia, J. Mater. Chem. A, 5(44), pp.22877-22896 10.1039/C7TA07847A
49
Rieth, A. J., Wright, A. M., Dinca, M., 2019 : Kinetic stability of metal-organic frameworks for corrosive and coordinating gas capture, Nat. Rev. Mater., 4(11), pp.708-725. 10.1038/s41578-019-0140-1
50
Jasuja, H., Peterson, G. W., Decoste, J. B., et al., 2015 : Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air, Chem. Eng. Sci., 124, pp.118-124. 10.1016/j.ces.2014.08.050
51
Yang, Y., Faheem, M., Wang, L., et al., 2018 : Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches, ACS Cent. Sci., 4(6), pp.748-754. 10.1021/acscentsci.8b0023229974070PMC6026774
52
Luo, L., Li, J., Chen, X., et al., 2022 : Superhigh and reversible NH3 uptake of cobaltous thiocyanate functionalized porous poly ionic liquids through competitive and cooperative interactions, Chem. Eng. J., 427, 131638. 10.1016/j.cej.2021.131638
53
Yang, H., Zuttel, A., Kim, S., et al., 2017 : Effect of boron doping on graphene oxide for ammonia adsorption, ChemNanoMat, 3(11), pp.794-797. 10.1002/cnma.201700187
54
Yang, C., Wang, J. F., Chen, Y., et al., 2018 : One-step template-free synthesis of 3D functionalized flower-like boron nitride nanosheets for NH3 and CO2 adsorption, Nanoscale, 10(23), pp.10979-10985. 10.1039/C8NR02074D29856461
55
Takahashi, A., Tanaka, H., Parajuli, D., et al., 2016 : Historical pigment exhibiting ammonia gas capture beyond standard adsorbents with adsorption sites of two kinds, J. Am. Chem. Soc., 138(20), pp.6376-6379. 10.1021/jacs.6b0272127147127
56
Szymula, A., Wlazło, Ł., Sasáková, N., et al., 2021 : The Use of Natural Sorbents to Reduce Ammonia Emissions from Cattle Faeces, Agronomy. 11(12), 2543. 10.3390/agronomy11122543
Information
  • Publisher :The Korean Institute of Resources Recycling
  • Publisher(Ko) :한국자원리싸이클링학회
  • Journal Title :Resources Recycling
  • Journal Title(Ko) :자원리싸이클링
  • Volume : 32
  • No :6
  • Pages :45-53
  • Received Date : 2023-12-11
  • Revised Date : 2023-12-20
  • Accepted Date : 2023-12-21